Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,481 Bytes
d2c9b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import os
from abc import ABC, abstractmethod
import torch
import torchvision.transforms as transforms
from einops import rearrange
from torchvision.datasets.utils import download_url
from typing import Optional, Tuple
# All reward models.
__all__ = ["AestheticReward", "HPSReward", "PickScoreReward", "MPSReward"]
class BaseReward(ABC):
"""An base class for reward models. A custom Reward class must implement two functions below.
"""
def __init__(self):
"""Define your reward model and image transformations (optional) here.
"""
pass
@abstractmethod
def __call__(self, batch_frames: torch.Tensor, batch_prompt: Optional[list[str]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
"""Given batch frames with shape `[B, C, T, H, W]` extracted from a list of videos and a list of prompts
(optional) correspondingly, return the loss and reward computed by your reward model (reduction by mean).
"""
pass
class AestheticReward(BaseReward):
"""Aesthetic Predictor [V2](https://github.com/christophschuhmann/improved-aesthetic-predictor)
and [V2.5](https://github.com/discus0434/aesthetic-predictor-v2-5) reward model.
"""
def __init__(
self,
encoder_path="openai/clip-vit-large-patch14",
predictor_path=None,
version="v2",
device="cpu",
dtype=torch.float16,
max_reward=10,
loss_scale=0.1,
):
from .improved_aesthetic_predictor import ImprovedAestheticPredictor
from ..video_caption.utils.siglip_v2_5 import convert_v2_5_from_siglip
self.encoder_path = encoder_path
self.predictor_path = predictor_path
self.version = version
self.device = device
self.dtype = dtype
self.max_reward = max_reward
self.loss_scale = loss_scale
if self.version != "v2" and self.version != "v2.5":
raise ValueError("Only v2 and v2.5 are supported.")
if self.version == "v2":
assert "clip-vit-large-patch14" in encoder_path.lower()
self.model = ImprovedAestheticPredictor(encoder_path=self.encoder_path, predictor_path=self.predictor_path)
# https://huggingface.co/openai/clip-vit-large-patch14/blob/main/preprocessor_config.json
# TODO: [transforms.Resize(224), transforms.CenterCrop(224)] for any aspect ratio.
self.transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
elif self.version == "v2.5":
assert "siglip-so400m-patch14-384" in encoder_path.lower()
self.model, _ = convert_v2_5_from_siglip(encoder_model_name=self.encoder_path)
# https://huggingface.co/google/siglip-so400m-patch14-384/blob/main/preprocessor_config.json
self.transform = transforms.Compose([
transforms.Resize((384, 384), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.model.to(device=self.device, dtype=self.dtype)
self.model.requires_grad_(False)
def __call__(self, batch_frames: torch.Tensor, batch_prompt: Optional[list[str]]=None) -> Tuple[torch.Tensor, torch.Tensor]:
batch_frames = rearrange(batch_frames, "b c t h w -> t b c h w")
batch_loss, batch_reward = 0, 0
for frames in batch_frames:
pixel_values = torch.stack([self.transform(frame) for frame in frames])
pixel_values = pixel_values.to(self.device, dtype=self.dtype)
if self.version == "v2":
reward = self.model(pixel_values)
elif self.version == "v2.5":
reward = self.model(pixel_values).logits.squeeze()
# Convert reward to loss in [0, 1].
if self.max_reward is None:
loss = (-1 * reward) * self.loss_scale
else:
loss = abs(reward - self.max_reward) * self.loss_scale
batch_loss, batch_reward = batch_loss + loss.mean(), batch_reward + reward.mean()
return batch_loss / batch_frames.shape[0], batch_reward / batch_frames.shape[0]
class HPSReward(BaseReward):
"""[HPS](https://github.com/tgxs002/HPSv2) v2 and v2.1 reward model.
"""
def __init__(
self,
model_path=None,
version="v2.0",
device="cpu",
dtype=torch.float16,
max_reward=1,
loss_scale=1,
):
from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
self.model_path = model_path
self.version = version
self.device = device
self.dtype = dtype
self.max_reward = max_reward
self.loss_scale = loss_scale
self.model, _, _ = create_model_and_transforms(
"ViT-H-14",
"laion2B-s32B-b79K",
precision=self.dtype,
device=self.device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False,
)
self.tokenizer = get_tokenizer("ViT-H-14")
# https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/blob/main/preprocessor_config.json
# TODO: [transforms.Resize(224), transforms.CenterCrop(224)] for any aspect ratio.
self.transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
if version == "v2.0":
url = "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Third_Party/HPS_v2_compressed.pt"
filename = "HPS_v2_compressed.pt"
md5 = "fd9180de357abf01fdb4eaad64631db4"
elif version == "v2.1":
url = "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Third_Party/HPS_v2.1_compressed.pt"
filename = "HPS_v2.1_compressed.pt"
md5 = "4067542e34ba2553a738c5ac6c1d75c0"
else:
raise ValueError("Only v2.0 and v2.1 are supported.")
if self.model_path is None or not os.path.exists(self.model_path):
download_url(url, torch.hub.get_dir(), md5=md5)
model_path = os.path.join(torch.hub.get_dir(), filename)
state_dict = torch.load(model_path, map_location="cpu")["state_dict"]
self.model.load_state_dict(state_dict)
self.model.to(device=self.device, dtype=self.dtype)
self.model.requires_grad_(False)
self.model.eval()
def __call__(self, batch_frames: torch.Tensor, batch_prompt: list[str]) -> Tuple[torch.Tensor, torch.Tensor]:
assert batch_frames.shape[0] == len(batch_prompt)
# Compute batch reward and loss in frame-wise.
batch_frames = rearrange(batch_frames, "b c t h w -> t b c h w")
batch_loss, batch_reward = 0, 0
for frames in batch_frames:
image_inputs = torch.stack([self.transform(frame) for frame in frames])
image_inputs = image_inputs.to(device=self.device, dtype=self.dtype)
text_inputs = self.tokenizer(batch_prompt).to(device=self.device)
outputs = self.model(image_inputs, text_inputs)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits = image_features @ text_features.T
reward = torch.diagonal(logits)
# Convert reward to loss in [0, 1].
if self.max_reward is None:
loss = (-1 * reward) * self.loss_scale
else:
loss = abs(reward - self.max_reward) * self.loss_scale
batch_loss, batch_reward = batch_loss + loss.mean(), batch_reward + reward.mean()
return batch_loss / batch_frames.shape[0], batch_reward / batch_frames.shape[0]
class PickScoreReward(BaseReward):
"""[PickScore](https://github.com/yuvalkirstain/PickScore) reward model.
"""
def __init__(
self,
model_path="yuvalkirstain/PickScore_v1",
device="cpu",
dtype=torch.float16,
max_reward=1,
loss_scale=1,
):
from transformers import AutoProcessor, AutoModel
self.model_path = model_path
self.device = device
self.dtype = dtype
self.max_reward = max_reward
self.loss_scale = loss_scale
# https://huggingface.co/yuvalkirstain/PickScore_v1/blob/main/preprocessor_config.json
self.transform = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
self.processor = AutoProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=self.dtype)
self.model = AutoModel.from_pretrained(model_path, torch_dtype=self.dtype).eval().to(device)
self.model.requires_grad_(False)
self.model.eval()
def __call__(self, batch_frames: torch.Tensor, batch_prompt: list[str]) -> Tuple[torch.Tensor, torch.Tensor]:
assert batch_frames.shape[0] == len(batch_prompt)
# Compute batch reward and loss in frame-wise.
batch_frames = rearrange(batch_frames, "b c t h w -> t b c h w")
batch_loss, batch_reward = 0, 0
for frames in batch_frames:
image_inputs = torch.stack([self.transform(frame) for frame in frames])
image_inputs = image_inputs.to(device=self.device, dtype=self.dtype)
text_inputs = self.processor(
text=batch_prompt,
padding=True,
truncation=True,
max_length=77,
return_tensors="pt",
).to(self.device)
image_features = self.model.get_image_features(pixel_values=image_inputs)
text_features = self.model.get_text_features(**text_inputs)
image_features = image_features / torch.norm(image_features, dim=-1, keepdim=True)
text_features = text_features / torch.norm(text_features, dim=-1, keepdim=True)
logits = image_features @ text_features.T
reward = torch.diagonal(logits)
# Convert reward to loss in [0, 1].
if self.max_reward is None:
loss = (-1 * reward) * self.loss_scale
else:
loss = abs(reward - self.max_reward) * self.loss_scale
batch_loss, batch_reward = batch_loss + loss.mean(), batch_reward + reward.mean()
return batch_loss / batch_frames.shape[0], batch_reward / batch_frames.shape[0]
class MPSReward(BaseReward):
"""[MPS](https://github.com/Kwai-Kolors/MPS) reward model.
"""
def __init__(
self,
model_path=None,
device="cpu",
dtype=torch.float16,
max_reward=1,
loss_scale=1,
):
from transformers import AutoTokenizer, AutoConfig
from .MPS.trainer.models.clip_model import CLIPModel
self.model_path = model_path
self.device = device
self.dtype = dtype
self.condition = "light, color, clarity, tone, style, ambiance, artistry, shape, face, hair, hands, limbs, structure, instance, texture, quantity, attributes, position, number, location, word, things."
self.max_reward = max_reward
self.loss_scale = loss_scale
processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
# https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/blob/main/preprocessor_config.json
# TODO: [transforms.Resize(224), transforms.CenterCrop(224)] for any aspect ratio.
self.transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
# We convert the original [ckpt](http://drive.google.com/file/d/17qrK_aJkVNM75ZEvMEePpLj6L867MLkN/view?usp=sharing)
# (contains the entire model) to a `state_dict`.
url = "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Third_Party/MPS_overall.pth"
filename = "MPS_overall.pth"
md5 = "1491cbbbd20565747fe07e7572e2ac56"
if self.model_path is None or not os.path.exists(self.model_path):
download_url(url, torch.hub.get_dir(), md5=md5)
model_path = os.path.join(torch.hub.get_dir(), filename)
self.tokenizer = AutoTokenizer.from_pretrained(processor_name_or_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(processor_name_or_path)
self.model = CLIPModel(config)
state_dict = torch.load(model_path, map_location="cpu")
self.model.load_state_dict(state_dict, strict=False)
self.model.to(device=self.device, dtype=self.dtype)
self.model.requires_grad_(False)
self.model.eval()
def _tokenize(self, caption):
input_ids = self.tokenizer(
caption,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
return input_ids
def __call__(
self,
batch_frames: torch.Tensor,
batch_prompt: list[str],
batch_condition: Optional[list[str]] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if batch_condition is None:
batch_condition = [self.condition] * len(batch_prompt)
batch_frames = rearrange(batch_frames, "b c t h w -> t b c h w")
batch_loss, batch_reward = 0, 0
for frames in batch_frames:
image_inputs = torch.stack([self.transform(frame) for frame in frames])
image_inputs = image_inputs.to(device=self.device, dtype=self.dtype)
text_inputs = self._tokenize(batch_prompt).to(self.device)
condition_inputs = self._tokenize(batch_condition).to(device=self.device)
text_features, image_features = self.model(text_inputs, image_inputs, condition_inputs)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# reward = self.model.logit_scale.exp() * torch.diag(torch.einsum('bd,cd->bc', text_features, image_features))
logits = image_features @ text_features.T
reward = torch.diagonal(logits)
# Convert reward to loss in [0, 1].
if self.max_reward is None:
loss = (-1 * reward) * self.loss_scale
else:
loss = abs(reward - self.max_reward) * self.loss_scale
batch_loss, batch_reward = batch_loss + loss.mean(), batch_reward + reward.mean()
return batch_loss / batch_frames.shape[0], batch_reward / batch_frames.shape[0]
if __name__ == "__main__":
import numpy as np
from decord import VideoReader
video_path_list = ["your_video_path_1.mp4", "your_video_path_2.mp4"]
prompt_list = ["your_prompt_1", "your_prompt_2"]
num_sampled_frames = 8
to_tensor = transforms.ToTensor()
sampled_frames_list = []
for video_path in video_path_list:
vr = VideoReader(video_path)
sampled_frame_indices = np.linspace(0, len(vr), num_sampled_frames, endpoint=False, dtype=int)
sampled_frames = vr.get_batch(sampled_frame_indices).asnumpy()
sampled_frames = torch.stack([to_tensor(frame) for frame in sampled_frames])
sampled_frames_list.append(sampled_frames)
sampled_frames = torch.stack(sampled_frames_list)
sampled_frames = rearrange(sampled_frames, "b t c h w -> b c t h w")
aesthetic_reward_v2 = AestheticReward(device="cuda", dtype=torch.bfloat16)
print(f"aesthetic_reward_v2: {aesthetic_reward_v2(sampled_frames)}")
aesthetic_reward_v2_5 = AestheticReward(
encoder_path="google/siglip-so400m-patch14-384", version="v2.5", device="cuda", dtype=torch.bfloat16
)
print(f"aesthetic_reward_v2_5: {aesthetic_reward_v2_5(sampled_frames)}")
hps_reward_v2 = HPSReward(device="cuda", dtype=torch.bfloat16)
print(f"hps_reward_v2: {hps_reward_v2(sampled_frames, prompt_list)}")
hps_reward_v2_1 = HPSReward(version="v2.1", device="cuda", dtype=torch.bfloat16)
print(f"hps_reward_v2_1: {hps_reward_v2_1(sampled_frames, prompt_list)}")
pick_score = PickScoreReward(device="cuda", dtype=torch.bfloat16)
print(f"pick_score_reward: {pick_score(sampled_frames, prompt_list)}")
mps_score = MPSReward(device="cuda", dtype=torch.bfloat16)
print(f"mps_reward: {mps_score(sampled_frames, prompt_list)}") |