File size: 6,860 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os

import torch
import warnings

try:
    import flash_attn_interface
    FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_3_AVAILABLE = False

try:
    import flash_attn
    FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_2_AVAILABLE = False

try:
    major, minor = torch.cuda.get_device_capability(0)
    if f"{major}.{minor}" == "8.0":
        from sageattention_sm80 import sageattn
        SAGE_ATTENTION_AVAILABLE = True
    elif f"{major}.{minor}" == "8.6":
        from sageattention_sm86 import sageattn
        SAGE_ATTENTION_AVAILABLE = True
    elif f"{major}.{minor}" == "8.9":
        from sageattention_sm89 import sageattn
        SAGE_ATTENTION_AVAILABLE = True
    elif f"{major}.{minor}" == "9.0":
        from sageattention_sm90 import sageattn
        SAGE_ATTENTION_AVAILABLE = True
    elif major>9:
        from sageattention_sm120 import sageattn
        SAGE_ATTENTION_AVAILABLE = True
except:
    try:
        from sageattention import sageattn
        SAGE_ATTENTION_AVAILABLE = True
    except:
        sageattn = None
        SAGE_ATTENTION_AVAILABLE = False

def flash_attention(
    q,
    k,
    v,
    q_lens=None,
    k_lens=None,
    dropout_p=0.,
    softmax_scale=None,
    q_scale=None,
    causal=False,
    window_size=(-1, -1),
    deterministic=False,
    dtype=torch.bfloat16,
    version=None,
):
    """
    q:              [B, Lq, Nq, C1].
    k:              [B, Lk, Nk, C1].
    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.
    q_lens:         [B].
    k_lens:         [B].
    dropout_p:      float. Dropout probability.
    softmax_scale:  float. The scaling of QK^T before applying softmax.
    causal:         bool. Whether to apply causal attention mask.
    window_size:    (left right). If not (-1, -1), apply sliding window local attention.
    deterministic:  bool. If True, slightly slower and uses more memory.
    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
    """
    half_dtypes = (torch.float16, torch.bfloat16)
    assert dtype in half_dtypes
    assert q.device.type == 'cuda' and q.size(-1) <= 256

    # params
    b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype

    def half(x):
        return x if x.dtype in half_dtypes else x.to(dtype)

    # preprocess query
    if q_lens is None:
        q = half(q.flatten(0, 1))
        q_lens = torch.tensor(
            [lq] * b, dtype=torch.int32).to(
                device=q.device, non_blocking=True)
    else:
        q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))

    # preprocess key, value
    if k_lens is None:
        k = half(k.flatten(0, 1))
        v = half(v.flatten(0, 1))
        k_lens = torch.tensor(
            [lk] * b, dtype=torch.int32).to(
                device=k.device, non_blocking=True)
    else:
        k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
        v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))

    q = q.to(v.dtype)
    k = k.to(v.dtype)

    if q_scale is not None:
        q = q * q_scale

    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
        warnings.warn(
            'Flash attention 3 is not available, use flash attention 2 instead.'
        )

    # apply attention
    if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
        # Note: dropout_p, window_size are not supported in FA3 now.
        x = flash_attn_interface.flash_attn_varlen_func(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
                0, dtype=torch.int32).to(q.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
                0, dtype=torch.int32).to(q.device, non_blocking=True),
            seqused_q=None,
            seqused_k=None,
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            softmax_scale=softmax_scale,
            causal=causal,
            deterministic=deterministic)[0].unflatten(0, (b, lq))
    else:
        assert FLASH_ATTN_2_AVAILABLE
        x = flash_attn.flash_attn_varlen_func(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
                0, dtype=torch.int32).to(q.device, non_blocking=True),
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
                0, dtype=torch.int32).to(q.device, non_blocking=True),
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            causal=causal,
            window_size=window_size,
            deterministic=deterministic).unflatten(0, (b, lq))

    # output
    return x.type(out_dtype)


def attention(
    q,
    k,
    v,
    q_lens=None,
    k_lens=None,
    dropout_p=0.,
    softmax_scale=None,
    q_scale=None,
    causal=False,
    window_size=(-1, -1),
    deterministic=False,
    dtype=torch.bfloat16,
    fa_version=None,
    attention_type=None,
    attn_mask=None,
):
    attention_type = os.environ.get("VIDEOX_ATTENTION_TYPE", "FLASH_ATTENTION") if attention_type is None else attention_type
    if torch.is_grad_enabled() and attention_type == "SAGE_ATTENTION":
        attention_type = "FLASH_ATTENTION"

    if attention_type == "SAGE_ATTENTION" and SAGE_ATTENTION_AVAILABLE:
        if q_lens is not None or k_lens is not None:
            warnings.warn(
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
            )

        out = sageattn(
            q, k, v, attn_mask=attn_mask, tensor_layout="NHD", is_causal=causal, dropout_p=dropout_p)

    elif attention_type == "FLASH_ATTENTION" and (FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE):
        return flash_attention(
            q=q,
            k=k,
            v=v,
            q_lens=q_lens,
            k_lens=k_lens,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            q_scale=q_scale,
            causal=causal,
            window_size=window_size,
            deterministic=deterministic,
            dtype=dtype,
            version=fa_version,
        )
    else:
        if q_lens is not None or k_lens is not None:
            warnings.warn(
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
            )
        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        out = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)

        out = out.transpose(1, 2).contiguous()
    return out