File size: 12,393 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Modified from https://github.com/ali-vilab/VACE/blob/main/control/models/wan/wan_control.py
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.

import glob
import inspect
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (TimestepEmbedding, Timesteps,
                                         apply_rotary_emb,
                                         get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available,
                             is_torch_version, logging, scale_lora_layers,
                             unscale_lora_layers)

from .flux2_transformer2d import (Flux2SingleTransformerBlock,
                                  Flux2Transformer2DModel,
                                  Flux2TransformerBlock)


class Flux2ControlTransformerBlock(Flux2TransformerBlock):
    def __init__(
        self, 
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float = 3.0,
        eps: float = 1e-6,
        bias: bool = False,
        block_id=0
    ):
        super().__init__(dim, num_attention_heads, attention_head_dim, mlp_ratio, eps, bias)
        self.block_id = block_id
        if block_id == 0:
            self.before_proj = nn.Linear(dim, dim)
            nn.init.zeros_(self.before_proj.weight)
            nn.init.zeros_(self.before_proj.bias)
        self.after_proj = nn.Linear(dim, dim)
        nn.init.zeros_(self.after_proj.weight)
        nn.init.zeros_(self.after_proj.bias)

    def forward(self, c, x, **kwargs):
        if self.block_id == 0:
            c = self.before_proj(c) + x
            all_c = []
        else:
            all_c = list(torch.unbind(c))
            c = all_c.pop(-1)

        encoder_hidden_states, c = super().forward(c, **kwargs)
        c_skip = self.after_proj(c)
        all_c += [c_skip, c]
        c = torch.stack(all_c)
        return encoder_hidden_states, c
    
    
class BaseFlux2TransformerBlock(Flux2TransformerBlock):
    def __init__(
        self, 
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        mlp_ratio: float = 3.0,
        eps: float = 1e-6,
        bias: bool = False,
        block_id=0
    ):
        super().__init__(dim, num_attention_heads, attention_head_dim, mlp_ratio, eps, bias)
        self.block_id = block_id

    def forward(self, hidden_states, hints=None, context_scale=1.0, **kwargs):
        encoder_hidden_states, hidden_states = super().forward(hidden_states, **kwargs)
        if self.block_id is not None:
            hidden_states = hidden_states + hints[self.block_id] * context_scale
        return encoder_hidden_states, hidden_states


class Flux2ControlTransformer2DModel(Flux2Transformer2DModel):
    @register_to_config
    def __init__(
        self,
        control_layers=None,
        control_in_dim=None,
        patch_size: int = 1,
        in_channels: int = 128,
        out_channels: Optional[int] = None,
        num_layers: int = 8,
        num_single_layers: int = 48,
        attention_head_dim: int = 128,
        num_attention_heads: int = 48,
        joint_attention_dim: int = 15360,
        timestep_guidance_channels: int = 256,
        mlp_ratio: float = 3.0,
        axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
        rope_theta: int = 2000,
        eps: float = 1e-6,
    ):
        super().__init__(
            patch_size, in_channels, out_channels, num_layers, num_single_layers, attention_head_dim, 
            num_attention_heads, joint_attention_dim, timestep_guidance_channels, mlp_ratio, axes_dims_rope, 
            rope_theta, eps
        )

        self.control_layers = [i for i in range(0, self.num_layers, 2)] if control_layers is None else control_layers
        self.control_in_dim = self.in_dim if control_in_dim is None else control_in_dim

        assert 0 in self.control_layers
        self.control_layers_mapping = {i: n for n, i in enumerate(self.control_layers)}

        # blocks
        del self.transformer_blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BaseFlux2TransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    eps=eps,
                    block_id=self.control_layers_mapping[i] if i in self.control_layers else None
                )
                for i in range(num_layers)
            ]
        )

        # control blocks
        self.control_transformer_blocks = nn.ModuleList(
            [
                Flux2ControlTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    eps=eps,
                    block_id=i
                )
                for i in self.control_layers
            ]
        )

        # control patch embeddings
        self.control_img_in = nn.Linear(self.control_in_dim, self.inner_dim)

    def forward_control(
        self,
        x,
        control_context,
        kwargs
    ):
        # embeddings
        c = self.control_img_in(control_context)
        # Context Parallel
        if self.sp_world_size > 1:
            c = torch.chunk(c, self.sp_world_size, dim=1)[self.sp_world_rank]

        # arguments
        new_kwargs = dict(x=x)
        new_kwargs.update(kwargs)
        
        for block in self.control_transformer_blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module, **static_kwargs):
                    def custom_forward(*inputs):
                        return module(*inputs, **static_kwargs)
                    return custom_forward
                ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, c = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block, **new_kwargs),
                    c,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, c = block(c, **new_kwargs)
            new_kwargs["encoder_hidden_states"] = encoder_hidden_states
 
        hints = torch.unbind(c)[:-1]
        return hints

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        control_context=None,
        control_context_scale=1.0,
        return_dict: bool = True,
    ):
        num_txt_tokens = encoder_hidden_states.shape[1]

        # 1. Calculate timestep embedding and modulation parameters
        timestep = timestep.to(hidden_states.dtype) * 1000
        guidance = guidance.to(hidden_states.dtype) * 1000

        temb = self.time_guidance_embed(timestep, guidance)

        double_stream_mod_img = self.double_stream_modulation_img(temb)
        double_stream_mod_txt = self.double_stream_modulation_txt(temb)
        single_stream_mod = self.single_stream_modulation(temb)[0]

        # 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
        hidden_states = self.x_embedder(hidden_states)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        # 3. Calculate RoPE embeddings from image and text tokens
        # NOTE: the below logic means that we can't support batched inference with images of different resolutions or
        # text prompts of differents lengths. Is this a use case we want to support?
        if img_ids.ndim == 3:
            img_ids = img_ids[0]
        if txt_ids.ndim == 3:
            txt_ids = txt_ids[0]

        if is_torch_npu_available():
            freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
            image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
            freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
            text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
        else:
            image_rotary_emb = self.pos_embed(img_ids)
            text_rotary_emb = self.pos_embed(txt_ids)
        concat_rotary_emb = (
            torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
            torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),
        )

        # Arguments
        kwargs = dict(
            encoder_hidden_states=encoder_hidden_states,
            temb_mod_params_img=double_stream_mod_img,
            temb_mod_params_txt=double_stream_mod_txt,
            image_rotary_emb=concat_rotary_emb,
            joint_attention_kwargs=joint_attention_kwargs,
        )
        hints = self.forward_control(
            hidden_states, control_context, kwargs
        )

        for index_block, block in enumerate(self.transformer_blocks):
            # Arguments
            kwargs = dict(
                encoder_hidden_states=encoder_hidden_states,
                temb_mod_params_img=double_stream_mod_img,
                temb_mod_params_txt=double_stream_mod_txt,
                image_rotary_emb=concat_rotary_emb,
                joint_attention_kwargs=joint_attention_kwargs,
                hints=hints,
                context_scale=control_context_scale
            )
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module, **static_kwargs):
                    def custom_forward(*inputs):
                        return module(*inputs, **static_kwargs)
                    return custom_forward

                ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}

                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block, **kwargs),
                    hidden_states,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, hidden_states = block(hidden_states, **kwargs)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    single_stream_mod,
                    concat_rotary_emb,
                    joint_attention_kwargs,
                    **ckpt_kwargs,
                )
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb_mod_params=single_stream_mod,
                    image_rotary_emb=concat_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

        # 6. Output layers
        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)