Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,350 Bytes
be751d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 |
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_flux.py
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings, get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (AdaLayerNormContinuous,
AdaLayerNormZero,
AdaLayerNormZeroSingle)
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging,
scale_lora_layers, unscale_lora_layers)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from ..dist import (FluxMultiGPUsAttnProcessor2_0, get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group)
from .attention_utils import attention
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _get_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
encoder_query = encoder_key = encoder_value = None
if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
return query, key, value, encoder_query, encoder_key, encoder_value
def _get_qkv_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
return _get_projections(attn, hidden_states, encoder_hidden_states)
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
sequence_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
if sequence_dim == 2:
cos = cos[None, None, :, :]
sin = sin[None, None, :, :]
elif sequence_dim == 1:
cos = cos[None, :, None, :]
sin = sin[None, :, None, :]
else:
raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.")
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class FluxAttnProcessor:
_attention_backend = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")
def __call__(
self,
attn: "FluxAttention",
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
text_seq_len: int = None,
) -> torch.Tensor:
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
attn, hidden_states, encoder_hidden_states
)
query = query.unflatten(-1, (attn.heads, -1))
key = key.unflatten(-1, (attn.heads, -1))
value = value.unflatten(-1, (attn.heads, -1))
query = attn.norm_q(query)
key = attn.norm_k(key)
if attn.added_kv_proj_dim is not None:
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
encoder_query = attn.norm_added_q(encoder_query)
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([encoder_query, query], dim=1)
key = torch.cat([encoder_key, key], dim=1)
value = torch.cat([encoder_value, value], dim=1)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
hidden_states = attention(
query, key, value, attn_mask=attention_mask,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class FluxAttention(torch.nn.Module):
_default_processor_cls = FluxAttnProcessor
_available_processors = [
FluxAttnProcessor,
]
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
context_pre_only: Optional[bool] = None,
pre_only: bool = False,
elementwise_affine: bool = True,
processor=None,
):
super().__init__()
self.head_dim = dim_head
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.use_bias = bias
self.dropout = dropout
self.out_dim = out_dim if out_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.heads = out_dim // dim_head if out_dim is not None else heads
self.added_kv_proj_dim = added_kv_proj_dim
self.added_proj_bias = added_proj_bias
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
if not self.pre_only:
self.to_out = torch.nn.ModuleList([])
self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(torch.nn.Dropout(dropout))
if added_kv_proj_dim is not None:
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)
if processor is None:
self.processor = self._default_processor_cls()
else:
self.processor = processor
def set_processor(self, processor: "AttnProcessor") -> None:
r"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
r"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"}
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm = AdaLayerNormZeroSingle(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
self.attn = FluxAttention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=FluxAttnProcessor(),
eps=1e-6,
pre_only=True,
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
residual = hidden_states
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
text_seq_len=text_seq_len,
**joint_attention_kwargs,
)
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
gate = gate.unsqueeze(1)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
return encoder_hidden_states, hidden_states
@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
):
super().__init__()
self.norm1 = AdaLayerNormZero(dim)
self.norm1_context = AdaLayerNormZero(dim)
self.attn = FluxAttention(
query_dim=dim,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=FluxAttnProcessor(),
eps=eps,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
joint_attention_kwargs = joint_attention_kwargs or {}
# Attention.
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
if len(attention_outputs) == 2:
attn_output, context_attn_output = attention_outputs
elif len(attention_outputs) == 3:
attn_output, context_attn_output, ip_attn_output = attention_outputs
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
if len(attention_outputs) == 3:
hidden_states = hidden_states + ip_attn_output
# Process attention outputs for the `encoder_hidden_states`.
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class FluxPosEmbed(nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
is_npu = ids.device.type == "npu"
freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
for i in range(n_axes):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin
class FluxTransformer2DModel(
ModelMixin,
ConfigMixin,
PeftAdapterMixin,
FromOriginalModelMixin,
):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Args:
patch_size (`int`, defaults to `1`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `64`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `None`):
The number of channels in the output. If not specified, it defaults to `in_channels`.
num_layers (`int`, defaults to `19`):
The number of layers of dual stream DiT blocks to use.
num_single_layers (`int`, defaults to `38`):
The number of layers of single stream DiT blocks to use.
attention_head_dim (`int`, defaults to `128`):
The number of dimensions to use for each attention head.
num_attention_heads (`int`, defaults to `24`):
The number of attention heads to use.
joint_attention_dim (`int`, defaults to `4096`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
pooled_projection_dim (`int`, defaults to `768`):
The number of dimensions to use for the pooled projection.
guidance_embeds (`bool`, defaults to `False`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
The dimensions to use for the rotary positional embeddings.
"""
_supports_gradient_checkpointing = True
# _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
# _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
# _repeated_blocks = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
out_channels: Optional[int] = None,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
):
super().__init__()
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
text_time_guidance_cls = (
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
)
self.time_text_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for _ in range(num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
self.sp_world_size = 1
self.sp_world_rank = 0
def _set_gradient_checkpointing(self, *args, **kwargs):
if "value" in kwargs:
self.gradient_checkpointing = kwargs["value"]
elif "enable" in kwargs:
self.gradient_checkpointing = kwargs["enable"]
else:
raise ValueError("Invalid set gradient checkpointing")
def enable_multi_gpus_inference(self,):
self.sp_world_size = get_sequence_parallel_world_size()
self.sp_world_rank = get_sequence_parallel_rank()
self.all_gather = get_sp_group().all_gather
self.set_attn_processor(FluxMultiGPUsAttnProcessor2_0())
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
controlnet_blocks_repeat: bool = False,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
# Context Parallel
if self.sp_world_size > 1:
hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank]
if image_rotary_emb is not None:
txt_rotary_emb = (
image_rotary_emb[0][:encoder_hidden_states.shape[1]],
image_rotary_emb[1][:encoder_hidden_states.shape[1]]
)
image_rotary_emb = (
torch.chunk(image_rotary_emb[0][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
torch.chunk(image_rotary_emb[1][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
)
image_rotary_emb = [torch.cat([_txt_rotary_emb, _image_rotary_emb], dim=0) \
for _txt_rotary_emb, _image_rotary_emb in zip(txt_rotary_emb, image_rotary_emb)]
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
# For Xlabs ControlNet.
if controlnet_blocks_repeat:
hidden_states = (
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
)
else:
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_single_block_samples[index_block // interval_control]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if self.sp_world_size > 1:
output = self.all_gather(output, dim=1)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output) |