Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,664 Bytes
df103d9 d2c9b66 3fd5bc5 d2c9b66 ffc2074 9f51691 52fdd94 df103d9 89aa5ab d2c9b66 89aa5ab d2c9b66 89aa5ab d2c9b66 bbb38e8 d2c9b66 89aa5ab d2c9b66 3fd5bc5 d2c9b66 ed56a3e d2c9b66 52fdd94 548acb6 3fd5bc5 ee3b958 d2c9b66 ffc2074 d2c9b66 c4729b7 d2c9b66 9dbd468 078f16b 2527cf0 52fdd94 2527cf0 52fdd94 2527cf0 52fdd94 2527cf0 52fdd94 2527cf0 52fdd94 2527cf0 ffc2074 eaa6790 a316f4d c4729b7 52fdd94 f13eb4d 2527cf0 c4729b7 52fdd94 d2c9b66 52fdd94 d2c9b66 52fdd94 d2c9b66 52fdd94 d2c9b66 3fd5bc5 d2c9b66 e39980f d2c9b66 078f16b 9035a3f 078f16b d2c9b66 9f51691 b6c2388 548acb6 9f51691 b6c2388 d2c9b66 e5cb924 d2c9b66 e5cb924 d2c9b66 c4729b7 548acb6 83cd1bb 52fdd94 078f16b 52fdd94 b6c2388 d2c9b66 3fd5bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import numpy as np
import random, json, spaces, torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from videox_fun.pipeline import ZImageControlPipeline
from videox_fun.models import ZImageControlTransformer2DModel
from transformers import AutoTokenizer, Qwen3ForCausalLM
from diffusers import AutoencoderKL
from utils.image_utils import get_image_latent, rescale_image
from utils.prompt_utils import polish_prompt
# from controlnet_aux import HEDdetector, MLSDdetector, OpenposeDetector, CannyDetector, MidasDetector
from controlnet_aux.processor import Processor
# MODEL_REPO = "Tongyi-MAI/Z-Image-Turbo"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280
# git clone https://huggingface.co/Tongyi-MAI/Z-Image-Turbo
MODEL_LOCAL = "models/Z-Image-Turbo/"
# curl -L -o Z-Image-Turbo-Fun-Controlnet-Union.safetensors https://huggingface.co/alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union/resolve/main/Z-Image-Turbo-Fun-Controlnet-Union.safetensors
TRANSFORMER_LOCAL = "models/Z-Image-Turbo-Fun-Controlnet-Union.safetensors"
weight_dtype = torch.bfloat16
# load transformer
transformer = ZImageControlTransformer2DModel.from_pretrained(
MODEL_LOCAL,
subfolder="transformer",
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
transformer_additional_kwargs={
"control_layers_places": [0, 5, 10, 15, 20, 25],
"control_in_dim": 16
},
).to(torch.bfloat16)
if TRANSFORMER_LOCAL is not None:
print(f"From checkpoint: {TRANSFORMER_LOCAL}")
from safetensors.torch import load_file, safe_open
state_dict = load_file(TRANSFORMER_LOCAL)
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# load ZImageControlPipeline
vae = AutoencoderKL.from_pretrained(
MODEL_LOCAL,
subfolder="vae"
).to(weight_dtype)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_LOCAL, subfolder="tokenizer"
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
MODEL_LOCAL, subfolder="text_encoder", torch_dtype=weight_dtype,
low_cpu_mem_usage=False,
)
# scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
MODEL_LOCAL,
subfolder="scheduler"
)
pipe = ZImageControlPipeline(
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
pipe.transformer = transformer
pipe.to("cuda")
# ======== AoTI compilation + FA3 ========
pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
spaces.aoti_blocks_load(pipe.transformer.layers,
"zerogpu-aoti/Z-Image", variant="fa3")
def prepare(prompt):
polished_prompt = polish_prompt(prompt)
return polished_prompt
@spaces.GPU
def inference(
prompt,
input_image,
image_scale=1.0,
control_mode='Canny',
control_context_scale = 0.75,
seed=42,
randomize_seed=True,
guidance_scale=1.5,
num_inference_steps=8,
progress=gr.Progress(track_tqdm=True),
):
# process image
print("DEBUG: process image")
if input_image is None:
print("Error: input_image is empty.")
return None
# input_image, width, height = scale_image(input_image, image_scale)
# control_mode='HED'
processor_id = 'canny'
if control_mode == 'HED':
processor_id = 'softedge_hed'
if control_mode =='Midas':
processor_id = 'depth_midas'
if control_mode =='MLSD':
processor_id = 'mlsd'
if control_mode =='Pose':
processor_id = 'openpose_full'
print(f"DEBUG: processor_id={processor_id}")
processor = Processor(processor_id)
# Width must be divisible by 16
control_image, width, height = rescale_image(input_image, image_scale, 16)
control_image = control_image.resize((1024, 1024))
print("DEBUG: processor running")
control_image = processor(control_image, to_pil=True)
control_image = control_image.resize((width, height))
print("DEBUG: control_image_torch")
control_image_torch = get_image_latent(control_image, sample_size=[height, width])[:, :, 0]
# generation
if randomize_seed: seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
height=height,
width=width,
generator=generator,
guidance_scale=guidance_scale,
control_image=control_image_torch,
num_inference_steps=num_inference_steps,
control_context_scale=control_context_scale,
).images[0]
return image, seed, control_image
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with open('static/data.json', 'r') as file:
data = json.load(file)
examples = data['examples']
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Column():
gr.HTML(read_file("static/header.html"))
with gr.Row():
with gr.Column():
input_image = gr.Image(
height=290, sources=['upload', 'clipboard'],
image_mode='RGB',
# elem_id="image_upload",
type="pil", label="Upload")
prompt = gr.Textbox(
label="Prompt",
show_label=False,
lines=2,
placeholder="Enter your prompt",
container=False,
)
control_mode = gr.Radio(
choices=["HED", "Canny", "Midas", "MLSD", "Pose"],
value="HED",
label="Control Mode"
)
run_button = gr.Button("Generate", variant="primary")
with gr.Column():
output_image = gr.Image(label="Generated image", show_label=False)
polished_prompt = gr.Textbox(label="Polished prompt", interactive=False)
with gr.Accordion("Preprocessor output", open=False):
control_image = gr.Image(label="Control image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
image_scale = gr.Slider(
label="Image scale",
minimum=0.5,
maximum=2.0,
step=0.1,
value=1.0,
)
control_context_scale = gr.Slider(
label="Control context scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.75,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=2.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=30,
step=1,
value=8,
)
gr.Examples(examples=examples, inputs=[input_image, prompt])
gr.HTML(read_file("static/footer.html"))
run_button.click(
fn=prepare,
inputs=prompt,
outputs=[polished_prompt]
# outputs=gr.State(), # Pass to the next function, not to UI at this step
).then(
fn=inference,
inputs=[
polished_prompt,
input_image,
image_scale,
control_mode,
control_context_scale,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[output_image, seed, control_image],
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
|