File size: 10,147 Bytes
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import sys

import numpy as np
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from omegaconf import OmegaConf
from PIL import Image

current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))]
for project_root in project_roots:
    sys.path.insert(0, project_root) if project_root not in sys.path else None

from videox_fun.dist import set_multi_gpus_devices, shard_model
from videox_fun.models import (AutoencoderKL, AutoTokenizer,
                               Qwen3ForCausalLM, ZImageControlTransformer2DModel)
from videox_fun.models.cache_utils import get_teacache_coefficients
from videox_fun.pipeline import ZImageControlPipeline
from videox_fun.utils.fm_solvers import FlowDPMSolverMultistepScheduler
from videox_fun.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from videox_fun.utils.fp8_optimization import (convert_model_weight_to_float8,
                                               convert_weight_dtype_wrapper)
from videox_fun.utils.lora_utils import merge_lora, unmerge_lora
from videox_fun.utils.utils import (filter_kwargs, get_image_to_video_latent, get_image_latent, get_image,
                                    get_video_to_video_latent,
                                    save_videos_grid)

# GPU memory mode, which can be chosen in [model_full_load, model_full_load_and_qfloat8, model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_full_load means that the entire model will be moved to the GPU.
# 
# model_full_load_and_qfloat8 means that the entire model will be moved to the GPU,
# and the transformer model has been quantized to float8, which can save more GPU memory. 
# 
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
# 
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, 
# and the transformer model has been quantized to float8, which can save more GPU memory. 
# 
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, 
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode     = "model_cpu_offload"
# Multi GPUs config
# Please ensure that the product of ulysses_degree and ring_degree equals the number of GPUs used. 
# For example, if you are using 8 GPUs, you can set ulysses_degree = 2 and ring_degree = 4.
# If you are using 1 GPU, you can set ulysses_degree = 1 and ring_degree = 1.
ulysses_degree      = 1
ring_degree         = 1
# Use FSDP to save more GPU memory in multi gpus.
fsdp_dit            = False
fsdp_text_encoder   = False
# Compile will give a speedup in fixed resolution and need a little GPU memory. 
# The compile_dit is not compatible with the fsdp_dit and sequential_cpu_offload.
compile_dit         = False

# Config and model path
config_path         = "config/z_image/z_image_control.yaml"
# model path
model_name          = "models/Diffusion_Transformer/Z-Image-Turbo/"

# Choose the sampler in "Flow", "Flow_Unipc", "Flow_DPM++"
sampler_name        = "Flow"

# Load pretrained model if need
transformer_path    = "models/Personalized_Model/Z-Image-Turbo-Fun-Controlnet-Union.safetensors" 
vae_path            = None
lora_path           = None

# Other params
sample_size         = [1728, 992]

# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype        = torch.bfloat16
control_image       = "asset/pose.jpg"
control_context_scale  = 0.75

# 使用更长的neg prompt如"模糊,突变,变形,失真,画面暗,文本字幕,画面固定,连环画,漫画,线稿,没有主体。",可以增加稳定性
# 在neg prompt中添加"安静,固定"等词语可以增加动态性。
prompt              = "一位年轻女子站在阳光明媚的海岸线上,白裙在轻拂的海风中微微飘动。她拥有一头鲜艳的紫色长发,在风中轻盈舞动,发间系着一个精致的黑色蝴蝶结,与身后柔和的蔚蓝天空形成鲜明对比。她面容清秀,眉目精致,透着一股甜美的青春气息;神情柔和,略带羞涩,目光静静地凝望着远方的地平线,双手自然交叠于身前,仿佛沉浸在思绪之中。在她身后,是辽阔无垠、波光粼粼的大海,阳光洒在海面上,映出温暖的金色光晕。"
negative_prompt     = " "
guidance_scale      = 0.00
seed                = 43
num_inference_steps = 9
lora_weight         = 0.55
save_path           = "samples/z-image-t2i-control"

device = set_multi_gpus_devices(ulysses_degree, ring_degree)
config = OmegaConf.load(config_path)

transformer = ZImageControlTransformer2DModel.from_pretrained(
    model_name, 
    subfolder="transformer",
    low_cpu_mem_usage=True,
    torch_dtype=weight_dtype,
    transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
).to(weight_dtype)

if transformer_path is not None:
    print(f"From checkpoint: {transformer_path}")
    if transformer_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(transformer_path)
    else:
        state_dict = torch.load(transformer_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = transformer.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get Vae
vae = AutoencoderKL.from_pretrained(
    model_name, 
    subfolder="vae"
).to(weight_dtype)

if vae_path is not None:
    print(f"From checkpoint: {vae_path}")
    if vae_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(vae_path)
    else:
        state_dict = torch.load(vae_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = vae.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get tokenizer and text_encoder
tokenizer = AutoTokenizer.from_pretrained(
    model_name, subfolder="tokenizer"
)
text_encoder = Qwen3ForCausalLM.from_pretrained(
    model_name, subfolder="text_encoder", torch_dtype=weight_dtype,
    low_cpu_mem_usage=True,
)

# Get Scheduler
Chosen_Scheduler = scheduler_dict = {
    "Flow": FlowMatchEulerDiscreteScheduler,
    "Flow_Unipc": FlowUniPCMultistepScheduler,
    "Flow_DPM++": FlowDPMSolverMultistepScheduler,
}[sampler_name]
scheduler = Chosen_Scheduler.from_pretrained(
    model_name, 
    subfolder="scheduler"
)

pipeline = ZImageControlPipeline(
    vae=vae,
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    transformer=transformer,
    scheduler=scheduler,
)

if ulysses_degree > 1 or ring_degree > 1:
    from functools import partial
    transformer.enable_multi_gpus_inference()
    if fsdp_dit:
        shard_fn = partial(shard_model, device_id=device, param_dtype=weight_dtype, module_to_wrapper=list(transformer.transformer_blocks) + list(transformer.single_transformer_blocks))
        pipeline.transformer = shard_fn(pipeline.transformer)
        print("Add FSDP DIT")
    if fsdp_text_encoder:
        shard_fn = partial(shard_model, device_id=device, param_dtype=weight_dtype, module_to_wrapper=text_encoder.language_model.layers, ignored_modules=[text_encoder.language_model.embed_tokens], transformer_layer_cls_to_wrap=["MistralDecoderLayer", "PixtralTransformer"])
        text_encoder = shard_fn(text_encoder)
        print("Add FSDP TEXT ENCODER")

if compile_dit:
    for i in range(len(pipeline.transformer.transformer_blocks)):
        pipeline.transformer.transformer_blocks[i] = torch.compile(pipeline.transformer.transformer_blocks[i])
    print("Add Compile")

if GPU_memory_mode == "sequential_cpu_offload":
    pipeline.enable_sequential_cpu_offload(device=device)
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
    convert_model_weight_to_float8(transformer, exclude_module_name=["img_in", "txt_in", "timestep"], device=device)
    convert_weight_dtype_wrapper(transformer, weight_dtype)
    pipeline.enable_model_cpu_offload(device=device)
elif GPU_memory_mode == "model_cpu_offload":
    pipeline.enable_model_cpu_offload(device=device)
elif GPU_memory_mode == "model_full_load_and_qfloat8":
    convert_model_weight_to_float8(transformer, exclude_module_name=["img_in", "txt_in", "timestep"], device=device)
    convert_weight_dtype_wrapper(transformer, weight_dtype)
    pipeline.to(device=device)
else:
    pipeline.to(device=device)

generator = torch.Generator(device=device).manual_seed(seed)

if lora_path is not None:
    pipeline = merge_lora(pipeline, lora_path, lora_weight, device=device, dtype=weight_dtype)

with torch.no_grad():
    if control_image is not None:
        control_image = get_image_latent(control_image, sample_size=sample_size)[:, :, 0]

    sample = pipeline(
        prompt      = prompt, 
        negative_prompt = negative_prompt,
        height      = sample_size[0],
        width       = sample_size[1],
        generator   = generator,
        guidance_scale = guidance_scale,
        control_image       = control_image,
        num_inference_steps = num_inference_steps,
        control_context_scale = control_context_scale,
    ).images

if lora_path is not None:
    pipeline = unmerge_lora(pipeline, lora_path, lora_weight, device=device, dtype=weight_dtype)

def save_results():
    if not os.path.exists(save_path):
        os.makedirs(save_path, exist_ok=True)

    index = len([path for path in os.listdir(save_path)]) + 1
    prefix = str(index).zfill(8)
    video_path = os.path.join(save_path, prefix + ".png")
    image = sample[0]
    image.save(video_path)

if ulysses_degree * ring_degree > 1:
    import torch.distributed as dist
    if dist.get_rank() == 0:
        save_results()
else:
    save_results()