File size: 42,721 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import inspect
import json
import os
import math
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import RMSNorm
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging,
                             scale_lora_layers, unscale_lora_layers)

from .attention_utils import attention
from ..dist import (ZMultiGPUsSingleStreamAttnProcessor, get_sequence_parallel_rank,
                    get_sequence_parallel_world_size, get_sp_group)


ADALN_EMBED_DIM = 256
SEQ_MULTI_OF = 32


class TimestepEmbedder(nn.Module):
    def __init__(self, out_size, mid_size=None, frequency_embedding_size=256):
        super().__init__()
        if mid_size is None:
            mid_size = out_size
        self.mlp = nn.Sequential(
            nn.Linear(
                frequency_embedding_size,
                mid_size,
                bias=True,
            ),
            nn.SiLU(),
            nn.Linear(
                mid_size,
                out_size,
                bias=True,
            ),
        )

        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        with torch.amp.autocast("cuda", enabled=False):
            half = dim // 2
            freqs = torch.exp(
                -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
            )
            args = t[:, None].float() * freqs[None]
            embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
            if dim % 2:
                embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
            return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        weight_dtype = self.mlp[0].weight.dtype
        if weight_dtype.is_floating_point:
            t_freq = t_freq.to(weight_dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class ZSingleStreamAttnProcessor:
    """
    Processor for Z-Image single stream attention that adapts the existing Attention class to match the behavior of the
    original Z-ImageAttention module.
    """

    _attention_backend = None
    _parallel_config = None

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "ZSingleStreamAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        freqs_cis: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        query = query.unflatten(-1, (attn.heads, -1))
        key = key.unflatten(-1, (attn.heads, -1))
        value = value.unflatten(-1, (attn.heads, -1))

        # Apply Norms
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE
        def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
            with torch.amp.autocast("cuda", enabled=False):
                x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
                freqs_cis = freqs_cis.unsqueeze(2)
                x_out = torch.view_as_real(x * freqs_cis).flatten(3)
                return x_out.type_as(x_in)  # todo

        if freqs_cis is not None:
            query = apply_rotary_emb(query, freqs_cis)
            key = apply_rotary_emb(key, freqs_cis)

        # Cast to correct dtype
        dtype = query.dtype
        query, key = query.to(dtype), key.to(dtype)

        # From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len]
        if attention_mask is not None and attention_mask.ndim == 2:
            attention_mask = attention_mask[:, None, None, :]

        # Compute joint attention
        hidden_states = attention(
            query,
            key,
            value,
            attn_mask=attention_mask
        )

        # Reshape back
        hidden_states = hidden_states.flatten(2, 3)
        hidden_states = hidden_states.to(dtype)

        output = attn.to_out[0](hidden_states)
        if len(attn.to_out) > 1:  # dropout
            output = attn.to_out[1](output)

        return output


class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int):
        super().__init__()
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)

    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))


@maybe_allow_in_graph
class ZImageTransformerBlock(nn.Module):
    def __init__(
        self,
        layer_id: int,
        dim: int,
        n_heads: int,
        n_kv_heads: int,
        norm_eps: float,
        qk_norm: bool,
        modulation=True,
    ):
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads

        # Refactored to use diffusers Attention with custom processor
        # Original Z-Image params: dim, n_heads, n_kv_heads, qk_norm
        self.attention = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=dim // n_heads,
            heads=n_heads,
            qk_norm="rms_norm" if qk_norm else None,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=ZSingleStreamAttnProcessor(),
        )

        self.feed_forward = FeedForward(dim=dim, hidden_dim=int(dim / 3 * 8))
        self.layer_id = layer_id

        self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)

        self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)

        self.modulation = modulation
        if modulation:
            self.adaLN_modulation = nn.Sequential(
                nn.Linear(min(dim, ADALN_EMBED_DIM), 4 * dim, bias=True),
            )

    def forward(
        self,
        x: torch.Tensor,
        attn_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        adaln_input: Optional[torch.Tensor] = None,
    ):
        if self.modulation:
            assert adaln_input is not None
            scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
            gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
            scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp

            # Attention block
            attn_out = self.attention(
                self.attention_norm1(x) * scale_msa,
                attention_mask=attn_mask,
                freqs_cis=freqs_cis,
            )
            x = x + gate_msa * self.attention_norm2(attn_out)

            # FFN block
            x = x + gate_mlp * self.ffn_norm2(
                self.feed_forward(
                    self.ffn_norm1(x) * scale_mlp,
                )
            )
        else:
            # Attention block
            attn_out = self.attention(
                self.attention_norm1(x),
                attention_mask=attn_mask,
                freqs_cis=freqs_cis,
            )
            x = x + self.attention_norm2(attn_out)

            # FFN block
            x = x + self.ffn_norm2(
                self.feed_forward(
                    self.ffn_norm1(x),
                )
            )

        return x


class FinalLayer(nn.Module):
    def __init__(self, hidden_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, out_channels, bias=True)

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
        )

    def forward(self, x, c):
        scale = 1.0 + self.adaLN_modulation(c)
        x = self.norm_final(x) * scale.unsqueeze(1)
        x = self.linear(x)
        return x


class RopeEmbedder:
    def __init__(
        self,
        theta: float = 256.0,
        axes_dims: List[int] = (16, 56, 56),
        axes_lens: List[int] = (64, 128, 128),
    ):
        self.theta = theta
        self.axes_dims = axes_dims
        self.axes_lens = axes_lens
        assert len(axes_dims) == len(axes_lens), "axes_dims and axes_lens must have the same length"
        self.freqs_cis = None

    @staticmethod
    def precompute_freqs_cis(dim: List[int], end: List[int], theta: float = 256.0):
        with torch.device("cpu"):
            freqs_cis = []
            for i, (d, e) in enumerate(zip(dim, end)):
                freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
                timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
                freqs = torch.outer(timestep, freqs).float()
                freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64)  # complex64
                freqs_cis.append(freqs_cis_i)

            return freqs_cis

    def __call__(self, ids: torch.Tensor):
        assert ids.ndim == 2
        assert ids.shape[-1] == len(self.axes_dims)
        device = ids.device

        if self.freqs_cis is None:
            self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
            self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
        else:
            # Ensure freqs_cis are on the same device as ids
            if self.freqs_cis[0].device != device:
                self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]

        result = []
        for i in range(len(self.axes_dims)):
            index = ids[:, i]
            result.append(self.freqs_cis[i][index])
        return torch.cat(result, dim=-1)


class ZImageTransformer2DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    _supports_gradient_checkpointing = True
    # _no_split_modules = ["ZImageTransformerBlock"]
    # _skip_layerwise_casting_patterns = ["t_embedder", "cap_embedder"]  # precision sensitive layers

    @register_to_config
    def __init__(
        self,
        all_patch_size=(2,),
        all_f_patch_size=(1,),
        in_channels=16,
        dim=3840,
        n_layers=30,
        n_refiner_layers=2,
        n_heads=30,
        n_kv_heads=30,
        norm_eps=1e-5,
        qk_norm=True,
        cap_feat_dim=2560,
        rope_theta=256.0,
        t_scale=1000.0,
        axes_dims=[32, 48, 48],
        axes_lens=[1024, 512, 512],
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = in_channels
        self.all_patch_size = all_patch_size
        self.all_f_patch_size = all_f_patch_size
        self.dim = dim
        self.n_heads = n_heads

        self.rope_theta = rope_theta
        self.t_scale = t_scale
        self.gradient_checkpointing = False

        assert len(all_patch_size) == len(all_f_patch_size)

        all_x_embedder = {}
        all_final_layer = {}
        for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)):
            x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * in_channels, dim, bias=True)
            all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder

            final_layer = FinalLayer(dim, patch_size * patch_size * f_patch_size * self.out_channels)
            all_final_layer[f"{patch_size}-{f_patch_size}"] = final_layer

        self.all_x_embedder = nn.ModuleDict(all_x_embedder)
        self.all_final_layer = nn.ModuleDict(all_final_layer)
        self.noise_refiner = nn.ModuleList(
            [
                ZImageTransformerBlock(
                    1000 + layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    norm_eps,
                    qk_norm,
                    modulation=True,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )
        self.context_refiner = nn.ModuleList(
            [
                ZImageTransformerBlock(
                    layer_id,
                    dim,
                    n_heads,
                    n_kv_heads,
                    norm_eps,
                    qk_norm,
                    modulation=False,
                )
                for layer_id in range(n_refiner_layers)
            ]
        )
        self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
        self.cap_embedder = nn.Sequential(
            RMSNorm(cap_feat_dim, eps=norm_eps),
            nn.Linear(cap_feat_dim, dim, bias=True),
        )

        self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
        self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))

        self.layers = nn.ModuleList(
            [
                ZImageTransformerBlock(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm)
                for layer_id in range(n_layers)
            ]
        )
        head_dim = dim // n_heads
        assert head_dim == sum(axes_dims)
        self.axes_dims = axes_dims
        self.axes_lens = axes_lens

        self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)

        self.sp_world_size = 1
        self.sp_world_rank = 0

    def _set_gradient_checkpointing(self, *args, **kwargs):
        if "value" in kwargs:
            self.gradient_checkpointing = kwargs["value"]
        elif "enable" in kwargs:
            self.gradient_checkpointing = kwargs["enable"]
        else:
            raise ValueError("Invalid set gradient checkpointing")

    def enable_multi_gpus_inference(self,):
        self.sp_world_size = get_sequence_parallel_world_size()
        self.sp_world_rank = get_sequence_parallel_rank()
        self.all_gather = get_sp_group().all_gather
        self.set_attn_processor(ZMultiGPUsSingleStreamAttnProcessor())

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
        pH = pW = patch_size
        pF = f_patch_size
        bsz = len(x)
        assert len(size) == bsz
        for i in range(bsz):
            F, H, W = size[i]
            ori_len = (F // pF) * (H // pH) * (W // pW)
            # "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
            x[i] = (
                x[i][:ori_len]
                .view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
                .permute(6, 0, 3, 1, 4, 2, 5)
                .reshape(self.out_channels, F, H, W)
            )
        return x

    @staticmethod
    def create_coordinate_grid(size, start=None, device=None):
        if start is None:
            start = (0 for _ in size)

        axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
        grids = torch.meshgrid(axes, indexing="ij")
        return torch.stack(grids, dim=-1)

    def patchify(
        self,
        all_image: List[torch.Tensor],
        patch_size: int,
        f_patch_size: int,
        cap_padding_len: int,
    ):
        pH = pW = patch_size
        pF = f_patch_size
        device = all_image[0].device

        all_image_out = []
        all_image_size = []
        all_image_pos_ids = []
        all_image_pad_mask = []

        for i, image in enumerate(all_image):
            ### Process Image
            C, F, H, W = image.size()
            all_image_size.append((F, H, W))
            F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW

            image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
            # "c f pf h ph w pw -> (f h w) (pf ph pw c)"
            image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)

            image_ori_len = len(image)
            image_padding_len = (-image_ori_len) % SEQ_MULTI_OF

            image_ori_pos_ids = self.create_coordinate_grid(
                size=(F_tokens, H_tokens, W_tokens),
                start=(cap_padding_len + 1, 0, 0),
                device=device,
            ).flatten(0, 2)
            image_padding_pos_ids = (
                self.create_coordinate_grid(
                    size=(1, 1, 1),
                    start=(0, 0, 0),
                    device=device,
                )
                .flatten(0, 2)
                .repeat(image_padding_len, 1)
            )
            image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0)
            all_image_pos_ids.append(image_padded_pos_ids)
            # pad mask
            all_image_pad_mask.append(
                torch.cat(
                    [
                        torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
                        torch.ones((image_padding_len,), dtype=torch.bool, device=device),
                    ],
                    dim=0,
                )
            )
            # padded feature
            image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
            all_image_out.append(image_padded_feat)

        return (
            all_image_out,
            all_image_size,
            all_image_pos_ids,
            all_image_pad_mask,
        )

    def patchify_and_embed(
        self,
        all_image: List[torch.Tensor],
        all_cap_feats: List[torch.Tensor],
        patch_size: int,
        f_patch_size: int,
    ):
        pH = pW = patch_size
        pF = f_patch_size
        device = all_image[0].device

        all_image_out = []
        all_image_size = []
        all_image_pos_ids = []
        all_image_pad_mask = []
        all_cap_pos_ids = []
        all_cap_pad_mask = []
        all_cap_feats_out = []

        for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
            ### Process Caption
            cap_ori_len = len(cap_feat)
            cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
            # padded position ids
            cap_padded_pos_ids = self.create_coordinate_grid(
                size=(cap_ori_len + cap_padding_len, 1, 1),
                start=(1, 0, 0),
                device=device,
            ).flatten(0, 2)
            all_cap_pos_ids.append(cap_padded_pos_ids)
            # pad mask
            all_cap_pad_mask.append(
                torch.cat(
                    [
                        torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
                        torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
                    ],
                    dim=0,
                )
            )
            # padded feature
            cap_padded_feat = torch.cat(
                [cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)],
                dim=0,
            )
            all_cap_feats_out.append(cap_padded_feat)

            ### Process Image
            C, F, H, W = image.size()
            all_image_size.append((F, H, W))
            F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW

            image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
            # "c f pf h ph w pw -> (f h w) (pf ph pw c)"
            image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)

            image_ori_len = len(image)
            image_padding_len = (-image_ori_len) % SEQ_MULTI_OF

            image_ori_pos_ids = self.create_coordinate_grid(
                size=(F_tokens, H_tokens, W_tokens),
                start=(cap_ori_len + cap_padding_len + 1, 0, 0),
                device=device,
            ).flatten(0, 2)
            image_padding_pos_ids = (
                self.create_coordinate_grid(
                    size=(1, 1, 1),
                    start=(0, 0, 0),
                    device=device,
                )
                .flatten(0, 2)
                .repeat(image_padding_len, 1)
            )
            image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0)
            all_image_pos_ids.append(image_padded_pos_ids)
            # pad mask
            all_image_pad_mask.append(
                torch.cat(
                    [
                        torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
                        torch.ones((image_padding_len,), dtype=torch.bool, device=device),
                    ],
                    dim=0,
                )
            )
            # padded feature
            image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
            all_image_out.append(image_padded_feat)

        return (
            all_image_out,
            all_cap_feats_out,
            all_image_size,
            all_image_pos_ids,
            all_cap_pos_ids,
            all_image_pad_mask,
            all_cap_pad_mask,
        )

    def forward(
        self,
        x: List[torch.Tensor],
        t,
        cap_feats: List[torch.Tensor],
        patch_size=2,
        f_patch_size=1,
    ):
        assert patch_size in self.all_patch_size
        assert f_patch_size in self.all_f_patch_size

        bsz = len(x)
        device = x[0].device
        t = t * self.t_scale
        t = self.t_embedder(t)

        (
            x,
            cap_feats,
            x_size,
            x_pos_ids,
            cap_pos_ids,
            x_inner_pad_mask,
            cap_inner_pad_mask,
        ) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)

        # x embed & refine
        x_item_seqlens = [len(_) for _ in x]
        assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens)
        x_max_item_seqlen = max(x_item_seqlens)

        x = torch.cat(x, dim=0)
        x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)

        # Match t_embedder output dtype to x for layerwise casting compatibility
        adaln_input = t.type_as(x)
        x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
        x = list(x.split(x_item_seqlens, dim=0))
        x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split(x_item_seqlens, dim=0))

        x = pad_sequence(x, batch_first=True, padding_value=0.0)
        x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
        x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
        for i, seq_len in enumerate(x_item_seqlens):
            x_attn_mask[i, :seq_len] = 1

        # Context Parallel
        if self.sp_world_size > 1:
            x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank]

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for layer in self.noise_refiner:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    x, x_attn_mask, x_freqs_cis, adaln_input,
                    **ckpt_kwargs,
                )
        else:
            for layer in self.noise_refiner:
                x = layer(x, x_attn_mask, x_freqs_cis, adaln_input)

        # cap embed & refine
        cap_item_seqlens = [len(_) for _ in cap_feats]
        assert all(_ % SEQ_MULTI_OF == 0 for _ in cap_item_seqlens)
        cap_max_item_seqlen = max(cap_item_seqlens)

        cap_feats = torch.cat(cap_feats, dim=0)
        cap_feats = self.cap_embedder(cap_feats)
        cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token
        cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0))
        cap_freqs_cis = list(self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split(cap_item_seqlens, dim=0))

        cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0)
        cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
        cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
        for i, seq_len in enumerate(cap_item_seqlens):
            cap_attn_mask[i, :seq_len] = 1

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for layer in self.context_refiner:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                cap_feats = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    cap_feats, 
                    cap_attn_mask, 
                    cap_freqs_cis,
                    **ckpt_kwargs,
                )
        else:
            for layer in self.context_refiner:
                cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis)

        # unified
        unified = []
        unified_freqs_cis = []
        for i in range(bsz):
            x_len = x_item_seqlens[i]
            cap_len = cap_item_seqlens[i]
            unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]]))
            unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
        unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)]
        assert unified_item_seqlens == [len(_) for _ in unified]
        unified_max_item_seqlen = max(unified_item_seqlens)

        unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
        unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
        unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
        for i, seq_len in enumerate(unified_item_seqlens):
            unified_attn_mask[i, :seq_len] = 1

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for layer in self.layers:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                unified = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    unified, 
                    unified_attn_mask, 
                    unified_freqs_cis, 
                    adaln_input,
                    **ckpt_kwargs,
                )
        else:
            for layer in self.layers:
                unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input)

        unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
        unified = list(unified.unbind(dim=0))
        x = self.unpatchify(unified, x_size, patch_size, f_patch_size)

        if self.sp_world_size > 1:
            x = self.all_gather(x, dim=1)
        x = torch.stack(x)
        return x, {}
    

    @classmethod
    def from_pretrained(
        cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={},
        low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
    ):
        if subfolder is not None:
            pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
        print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")

        config_file = os.path.join(pretrained_model_path, 'config.json')
        if not os.path.isfile(config_file):
            raise RuntimeError(f"{config_file} does not exist")
        with open(config_file, "r") as f:
            config = json.load(f)

        from diffusers.utils import WEIGHTS_NAME
        model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
        model_file_safetensors = model_file.replace(".bin", ".safetensors")

        if "dict_mapping" in transformer_additional_kwargs.keys():
            for key in transformer_additional_kwargs["dict_mapping"]:
                transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key]

        if low_cpu_mem_usage:
            try:
                import re

                from diffusers import __version__ as diffusers_version
                if diffusers_version >= "0.33.0":
                    from diffusers.models.model_loading_utils import \
                        load_model_dict_into_meta
                else:
                    from diffusers.models.modeling_utils import \
                        load_model_dict_into_meta
                from diffusers.utils import is_accelerate_available
                if is_accelerate_available():
                    import accelerate
                
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **transformer_additional_kwargs)

                param_device = "cpu"
                if os.path.exists(model_file):
                    state_dict = torch.load(model_file, map_location="cpu")
                elif os.path.exists(model_file_safetensors):
                    from safetensors.torch import load_file, safe_open
                    state_dict = load_file(model_file_safetensors)
                else:
                    from safetensors.torch import load_file, safe_open
                    model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
                    state_dict = {}
                    print(model_files_safetensors)
                    for _model_file_safetensors in model_files_safetensors:
                        _state_dict = load_file(_model_file_safetensors)
                        for key in _state_dict:
                            state_dict[key] = _state_dict[key]

                filtered_state_dict = {}
                for key in state_dict:
                    if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size():
                        filtered_state_dict[key] = state_dict[key]
                    else:
                        print(f"Skipping key '{key}' due to size mismatch or absence in model.")
                        
                model_keys = set(model.state_dict().keys())
                loaded_keys = set(filtered_state_dict.keys())
                missing_keys = model_keys - loaded_keys

                def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None):
                    initialized_dict = {}
                    
                    with torch.no_grad():
                        for key in missing_keys:
                            param_shape = model_state_dict[key].shape
                            param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype
                            if "control" in key and key.replace("control_", "") in filtered_state_dict.keys():
                                initialized_dict[key] = filtered_state_dict[key.replace("control_", "")].clone()
                                print(f"Initializing missing parameter '{key}' with model.state_dict().")
                            elif "after_proj" in key or "before_proj" in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                                print(f"Initializing missing parameter '{key}' with zero.")
                            elif 'weight' in key:
                                if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']):
                                    initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
                                elif 'embedding' in key or 'embed' in key:
                                    initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
                                elif 'head' in key or 'output' in key or 'proj_out' in key:
                                    initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                                elif len(param_shape) >= 2:
                                    initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype)
                                    nn.init.xavier_uniform_(initialized_dict[key])
                                else:
                                    initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
                            elif 'bias' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            elif 'running_mean' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            elif 'running_var' in key:
                                initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
                            elif 'num_batches_tracked' in key:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long)
                            else:
                                initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
                            
                    return initialized_dict

                if missing_keys:
                    print(f"Missing keys will be initialized: {sorted(missing_keys)}")
                    initialized_params = initialize_missing_parameters(
                        missing_keys, 
                        model.state_dict(), 
                        torch_dtype
                    )
                    filtered_state_dict.update(initialized_params)

                if diffusers_version >= "0.33.0":
                    # Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit:
                    # https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785.
                    load_model_dict_into_meta(
                        model,
                        filtered_state_dict,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_path,
                    )
                else:
                    model._convert_deprecated_attention_blocks(filtered_state_dict)
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        filtered_state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_path,
                    )

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        print(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )
                
                params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
                print(f"### All Parameters: {sum(params) / 1e6} M")

                params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
                print(f"### attn1 Parameters: {sum(params) / 1e6} M")
                return model
            except Exception as e:
                print(
                    f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead."
                )
        
        model = cls.from_config(config, **transformer_additional_kwargs)
        if os.path.exists(model_file):
            state_dict = torch.load(model_file, map_location="cpu")
        elif os.path.exists(model_file_safetensors):
            from safetensors.torch import load_file, safe_open
            state_dict = load_file(model_file_safetensors)
        else:
            from safetensors.torch import load_file, safe_open
            model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
            state_dict = {}
            for _model_file_safetensors in model_files_safetensors:
                _state_dict = load_file(_model_file_safetensors)
                for key in _state_dict:
                    state_dict[key] = _state_dict[key]
        
        tmp_state_dict = {} 
        for key in state_dict:
            if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
                tmp_state_dict[key] = state_dict[key]
            else:
                print(key, "Size don't match, skip")
        
        for key in model.state_dict():
            if "control" in key and key.replace("control_", "") in state_dict.keys() and model.state_dict()[key].size() == state_dict[key.replace("control_", "")].size():
                tmp_state_dict[key] = state_dict[key.replace("control_", "")].clone()
                print(f"Initializing missing parameter '{key}' with model.state_dict().")
                
        state_dict = tmp_state_dict

        m, u = model.load_state_dict(state_dict, strict=False)
        print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
        print(m)
        
        params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
        print(f"### All Parameters: {sum(params) / 1e6} M")

        params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
        print(f"### attn1 Parameters: {sum(params) / 1e6} M")
        
        model = model.to(torch_dtype)
        return model