File size: 15,029 Bytes
be751d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Modified from https://github.com/ali-vilab/VACE/blob/main/vace/models/wan/wan_vace.py
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
from typing import Any, Dict

import os
import math
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import register_to_config
from diffusers.utils import is_torch_version

from .wan_transformer3d import (WanAttentionBlock, WanTransformer3DModel,
                                sinusoidal_embedding_1d)
from ..utils import cfg_skip


VIDEOX_OFFLOAD_VACE_LATENTS = os.environ.get("VIDEOX_OFFLOAD_VACE_LATENTS", False)

class VaceWanAttentionBlock(WanAttentionBlock):
    def __init__(
            self,
            cross_attn_type,
            dim,
            ffn_dim,
            num_heads,
            window_size=(-1, -1),
            qk_norm=True,
            cross_attn_norm=False,
            eps=1e-6,
            block_id=0
    ):
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
        self.block_id = block_id
        if block_id == 0:
            self.before_proj = nn.Linear(self.dim, self.dim)
            nn.init.zeros_(self.before_proj.weight)
            nn.init.zeros_(self.before_proj.bias)
        self.after_proj = nn.Linear(self.dim, self.dim)
        nn.init.zeros_(self.after_proj.weight)
        nn.init.zeros_(self.after_proj.bias)

    def forward(self, c, x, **kwargs):
        if self.block_id == 0:
            c = self.before_proj(c) + x
            all_c = []
        else:
            all_c = list(torch.unbind(c))
            c = all_c.pop(-1)

        if VIDEOX_OFFLOAD_VACE_LATENTS:
            c = c.to(x.device)

        c = super().forward(c, **kwargs)
        c_skip = self.after_proj(c)

        if VIDEOX_OFFLOAD_VACE_LATENTS:
            c_skip = c_skip.to("cpu")
            c = c.to("cpu")

        all_c += [c_skip, c]
        c = torch.stack(all_c)
        return c
    
    
class BaseWanAttentionBlock(WanAttentionBlock):
    def __init__(
        self,
        cross_attn_type,
        dim,
        ffn_dim,
        num_heads,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=False,
        eps=1e-6,
        block_id=None
    ):
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
        self.block_id = block_id

    def forward(self, x, hints, context_scale=1.0, **kwargs):
        x = super().forward(x, **kwargs)
        if self.block_id is not None:
            if VIDEOX_OFFLOAD_VACE_LATENTS:
                x = x + hints[self.block_id].to(x.device) * context_scale
            else:
                x = x + hints[self.block_id] * context_scale
        return x
    
    
class VaceWanTransformer3DModel(WanTransformer3DModel):
    @register_to_config
    def __init__(self,
                 vace_layers=None,
                 vace_in_dim=None,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        model_type = "t2v"   # TODO: Hard code for both preview and official versions.
        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
                         num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)

        self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim

        assert 0 in self.vace_layers
        self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}

        # blocks
        self.blocks = nn.ModuleList([
            BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
                                  self.cross_attn_norm, self.eps,
                                  block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
            for i in range(self.num_layers)
        ])

        # vace blocks
        self.vace_blocks = nn.ModuleList([
            VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
                                     self.cross_attn_norm, self.eps, block_id=i)
            for i in self.vace_layers
        ])

        # vace patch embeddings
        self.vace_patch_embedding = nn.Conv3d(
            self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
        )

    def forward_vace(
        self,
        x,
        vace_context,
        seq_len,
        kwargs
    ):
        # embeddings
        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
        c = [u.flatten(2).transpose(1, 2) for u in c]
        c = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in c
        ])
        # Context Parallel
        if self.sp_world_size > 1:
            c = torch.chunk(c, self.sp_world_size, dim=1)[self.sp_world_rank]

        # arguments
        new_kwargs = dict(x=x)
        new_kwargs.update(kwargs)
        
        for block in self.vace_blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                def create_custom_forward(module, **static_kwargs):
                    def custom_forward(*inputs):
                        return module(*inputs, **static_kwargs)
                    return custom_forward
                ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                c = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block, **new_kwargs),
                    c,
                    **ckpt_kwargs,
                )
            else:
                c = block(c, **new_kwargs)
        hints = torch.unbind(c)[:-1]
        return hints

    @cfg_skip()
    def forward(
        self,
        x,
        t,
        vace_context,
        context,
        seq_len,
        vace_context_scale=1.0,
        clip_fea=None,
        y=None,
        cond_flag=True
    ):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        # if self.model_type == 'i2v':
        #     assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        dtype = x.dtype
        if self.freqs.device != device and torch.device(type="meta") != device:
            self.freqs = self.freqs.to(device)

        # if y is not None:
        #     x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        if self.sp_world_size > 1:
            seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])

        # time embeddings
        with amp.autocast(dtype=torch.float32):
            e = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, t).float())
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
            assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))

        # Context Parallel
        if self.sp_world_size > 1:
            x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank]
            
        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens,
            dtype=dtype,
            t=t)
        hints = self.forward_vace(x, vace_context, seq_len, kwargs)

        kwargs['hints'] = hints
        kwargs['context_scale'] = vace_context_scale

        # TeaCache
        if self.teacache is not None:
            if cond_flag:
                if t.dim() != 1:
                    modulated_inp = e0[:, -1, :]
                else:
                    modulated_inp = e0
                skip_flag = self.teacache.cnt < self.teacache.num_skip_start_steps
                if skip_flag:
                    self.should_calc = True
                    self.teacache.accumulated_rel_l1_distance = 0
                else:
                    if cond_flag:
                        rel_l1_distance = self.teacache.compute_rel_l1_distance(self.teacache.previous_modulated_input, modulated_inp)
                        self.teacache.accumulated_rel_l1_distance += self.teacache.rescale_func(rel_l1_distance)
                    if self.teacache.accumulated_rel_l1_distance < self.teacache.rel_l1_thresh:
                        self.should_calc = False
                    else:
                        self.should_calc = True
                        self.teacache.accumulated_rel_l1_distance = 0
                self.teacache.previous_modulated_input = modulated_inp
                self.teacache.should_calc = self.should_calc
            else:
                self.should_calc = self.teacache.should_calc
        
        # TeaCache
        if self.teacache is not None:
            if not self.should_calc:
                previous_residual = self.teacache.previous_residual_cond if cond_flag else self.teacache.previous_residual_uncond
                x = x + previous_residual.to(x.device)[-x.size()[0]:,]
            else:
                ori_x = x.clone().cpu() if self.teacache.offload else x.clone()

                for block in self.blocks:
                    if torch.is_grad_enabled() and self.gradient_checkpointing:
                        def create_custom_forward(module, **static_kwargs):
                            def custom_forward(*inputs):
                                return module(*inputs, **static_kwargs)
                            return custom_forward
                        extra_kwargs = {
                            'e': e0,
                            'seq_lens': seq_lens,
                            'grid_sizes': grid_sizes,
                            'freqs': self.freqs,
                            'context': context,
                            'context_lens': context_lens,
                            'dtype': dtype,
                            't': t,
                        }

                        ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}

                        x = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block, **extra_kwargs),
                            x,
                            hints,
                            vace_context_scale,
                            **ckpt_kwargs,
                        )
                    else:
                        x = block(x, **kwargs)
                    
                if cond_flag:
                    self.teacache.previous_residual_cond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
                else:
                    self.teacache.previous_residual_uncond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
        else:
            for block in self.blocks:
                if torch.is_grad_enabled() and self.gradient_checkpointing:
                    def create_custom_forward(module, **static_kwargs):
                        def custom_forward(*inputs):
                            return module(*inputs, **static_kwargs)
                        return custom_forward
                    extra_kwargs = {
                        'e': e0,
                        'seq_lens': seq_lens,
                        'grid_sizes': grid_sizes,
                        'freqs': self.freqs,
                        'context': context,
                        'context_lens': context_lens,
                        'dtype': dtype,
                        't': t,
                    }

                    ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}

                    x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block, **extra_kwargs),
                        x,
                        hints,
                        vace_context_scale,
                        **ckpt_kwargs,
                    )
                else:
                    x = block(x, **kwargs)

        # head
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward
            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
            x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.head), x, e, **ckpt_kwargs)
        else:
            x = self.head(x, e)

        if self.sp_world_size > 1:
            x = self.all_gather(x, dim=1)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        x = torch.stack(x)
        if self.teacache is not None and cond_flag:
            self.teacache.cnt += 1
            if self.teacache.cnt == self.teacache.num_steps:
                self.teacache.reset()
        return x