File size: 28,247 Bytes
d2c9b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import numpy as np
import PIL
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (BaseOutput, is_torch_xla_available, logging,
                             replace_example_docstring)
from diffusers.utils.torch_utils import randn_tensor
from transformers import AutoTokenizer, PreTrainedModel

from ..models import AutoencoderKL, ZImageTransformer2DModel

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import ZImagePipeline

        >>> pipe = ZImagePipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16)
        >>> pipe.to("cuda")

        >>> # Optionally, set the attention backend to flash-attn 2 or 3, default is SDPA in PyTorch.
        >>> # (1) Use flash attention 2
        >>> # pipe.transformer.set_attention_backend("flash")
        >>> # (2) Use flash attention 3
        >>> # pipe.transformer.set_attention_backend("_flash_3")

        >>> prompt = "一幅为名为“造相「Z-IMAGE-TURBO」”的项目设计的创意海报。画面巧妙地将文字概念视觉化:一辆复古蒸汽小火车化身为巨大的拉链头,正拉开厚厚的冬日积雪,展露出一个生机盎然的春天。"
        >>> image = pipe(
        diffusers.     prompt,
        diffusers.     height=1024,
        diffusers.     width=1024,
        diffusers.     num_inference_steps=9,
        diffusers.     guidance_scale=0.0,
        diffusers.     generator=torch.Generator("cuda").manual_seed(42),
        diffusers. ).images[0]
        >>> image.save("zimage.png")
        ```
"""


# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.15,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


@dataclass
class ZImagePipelineOutput(BaseOutput):
    """
    Output class for Z-Image image generation pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
            height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion
            pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be
            passed to the decoder.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


class ZImageControlPipeline(DiffusionPipeline, FromSingleFileMixin):
    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: PreTrainedModel,
        tokenizer: AutoTokenizer,
        transformer: ZImageTransformer2DModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            transformer=transformer,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        device: Optional[torch.device] = None,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[List[torch.FloatTensor]] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
    ):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        prompt_embeds = self._encode_prompt(
            prompt=prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        if do_classifier_free_guidance:
            if negative_prompt is None:
                negative_prompt = ["" for _ in prompt]
            else:
                negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            assert len(prompt) == len(negative_prompt)
            negative_prompt_embeds = self._encode_prompt(
                prompt=negative_prompt,
                device=device,
                prompt_embeds=negative_prompt_embeds,
                max_sequence_length=max_sequence_length,
            )
        else:
            negative_prompt_embeds = []
        return prompt_embeds, negative_prompt_embeds

    def _encode_prompt(
        self,
        prompt: Union[str, List[str]],
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[List[torch.FloatTensor]] = None,
        max_sequence_length: int = 512,
    ) -> List[torch.FloatTensor]:
        device = device or self._execution_device

        if prompt_embeds is not None:
            return prompt_embeds

        if isinstance(prompt, str):
            prompt = [prompt]

        for i, prompt_item in enumerate(prompt):
            messages = [
                {"role": "user", "content": prompt_item},
            ]
            prompt_item = self.tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=True,
                enable_thinking=True,
            )
            prompt[i] = prompt_item

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids.to(device)
        prompt_masks = text_inputs.attention_mask.to(device).bool()

        prompt_embeds = self.text_encoder(
            input_ids=text_input_ids,
            attention_mask=prompt_masks,
            output_hidden_states=True,
        ).hidden_states[-2]

        embeddings_list = []

        for i in range(len(prompt_embeds)):
            embeddings_list.append(prompt_embeds[i][prompt_masks[i]])

        return embeddings_list

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        shape = (batch_size, num_channels_latents, height, width)

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        
        control_image: Union[torch.FloatTensor] = None,
        control_context_scale: float = 1.0,

        num_inference_steps: int = 50,
        sigmas: Optional[List[float]] = None,
        guidance_scale: float = 5.0,
        cfg_normalization: bool = False,
        cfg_truncation: float = 1.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[List[torch.FloatTensor]] = None,
        negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, *optional*, defaults to 1024):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 1024):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            cfg_normalization (`bool`, *optional*, defaults to False):
                Whether to apply configuration normalization.
            cfg_truncation (`float`, *optional*, defaults to 1.0):
                The truncation value for configuration.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will be generated by sampling using the supplied random `generator`.
            prompt_embeds (`List[torch.FloatTensor]`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
                tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int`, *optional*, defaults to 512):
                Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
            generated images.
        """
        height = height or 1024
        width = width or 1024

        vae_scale = self.vae_scale_factor * 2
        if height % vae_scale != 0:
            raise ValueError(
                f"Height must be divisible by {vae_scale} (got {height}). "
                f"Please adjust the height to a multiple of {vae_scale}."
            )
        if width % vae_scale != 0:
            raise ValueError(
                f"Width must be divisible by {vae_scale} (got {width}). "
                f"Please adjust the width to a multiple of {vae_scale}."
            )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False
        self._cfg_normalization = cfg_normalization
        self._cfg_truncation = cfg_truncation
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = len(prompt_embeds)

        device = self._execution_device
        weight_dtype = self.text_encoder.dtype
        num_channels_latents = self.transformer.in_channels

        if control_image is not None:
            control_image = self.image_processor.preprocess(control_image, height=height, width=width) 
            control_image = control_image.to(dtype=weight_dtype, device=device)
            control_latents = self.vae.encode(control_image)[0].mode()
            control_latents = (control_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
        else:
            control_latents = torch.zeros_like(inpaint_latent)

        control_context = control_latents.unsqueeze(2)

        # If prompt_embeds is provided and prompt is None, skip encoding
        if prompt_embeds is not None and prompt is None:
            if self.do_classifier_free_guidance and negative_prompt_embeds is None:
                raise ValueError(
                    "When `prompt_embeds` is provided without `prompt`, "
                    "`negative_prompt_embeds` must also be provided for classifier-free guidance."
                )
        else:
            (
                prompt_embeds,
                negative_prompt_embeds,
            ) = self.encode_prompt(
                prompt=prompt,
                negative_prompt=negative_prompt,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                device=device,
                max_sequence_length=max_sequence_length,
            )

        # 4. Prepare latent variables
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            torch.float32,
            device,
            generator,
            latents,
        )

        # Repeat prompt_embeds for num_images_per_prompt
        if num_images_per_prompt > 1:
            prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
            if self.do_classifier_free_guidance and negative_prompt_embeds:
                negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]

        actual_batch_size = batch_size * num_images_per_prompt
        image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)

        # 5. Prepare timesteps
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.get("base_image_seq_len", 256),
            self.scheduler.config.get("max_image_seq_len", 4096),
            self.scheduler.config.get("base_shift", 0.5),
            self.scheduler.config.get("max_shift", 1.15),
        )
        self.scheduler.sigma_min = 0.0
        scheduler_kwargs = {"mu": mu}
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            sigmas=sigmas,
            **scheduler_kwargs,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0])
                timestep = (1000 - timestep) / 1000
                # Normalized time for time-aware config (0 at start, 1 at end)
                t_norm = timestep[0].item()

                # Handle cfg truncation
                current_guidance_scale = self.guidance_scale
                if (
                    self.do_classifier_free_guidance
                    and self._cfg_truncation is not None
                    and float(self._cfg_truncation) <= 1
                ):
                    if t_norm > self._cfg_truncation:
                        current_guidance_scale = 0.0

                # Run CFG only if configured AND scale is non-zero
                apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0

                if apply_cfg:
                    latents_typed = latents.to(self.transformer.dtype)
                    latent_model_input = latents_typed.repeat(2, 1, 1, 1)
                    prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
                    timestep_model_input = timestep.repeat(2)
                else:
                    latent_model_input = latents.to(self.transformer.dtype)
                    prompt_embeds_model_input = prompt_embeds
                    timestep_model_input = timestep

                latent_model_input = latent_model_input.unsqueeze(2)
                latent_model_input_list = list(latent_model_input.unbind(dim=0))

                model_out_list = self.transformer(
                    latent_model_input_list,
                    timestep_model_input,
                    prompt_embeds_model_input,
                    control_context=control_context,
                    control_context_scale=control_context_scale,
                )[0]

                if apply_cfg:
                    # Perform CFG
                    pos_out = model_out_list[:actual_batch_size]
                    neg_out = model_out_list[actual_batch_size:]

                    noise_pred = []
                    for j in range(actual_batch_size):
                        pos = pos_out[j].float()
                        neg = neg_out[j].float()

                        pred = pos + current_guidance_scale * (pos - neg)

                        # Renormalization
                        if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
                            ori_pos_norm = torch.linalg.vector_norm(pos)
                            new_pos_norm = torch.linalg.vector_norm(pred)
                            max_new_norm = ori_pos_norm * float(self._cfg_normalization)
                            if new_pos_norm > max_new_norm:
                                pred = pred * (max_new_norm / new_pos_norm)

                        noise_pred.append(pred)

                    noise_pred = torch.stack(noise_pred, dim=0)
                else:
                    noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)

                noise_pred = noise_pred.squeeze(2)
                noise_pred = -noise_pred

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
                assert latents.dtype == torch.float32

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents

        else:
            latents = latents.to(self.vae.dtype)
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor

            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ZImagePipelineOutput(images=image)