Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,334 Bytes
d2c9b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import gc
import inspect
import os
import shutil
import subprocess
import time
import cv2
import imageio
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
def filter_kwargs(cls, kwargs):
sig = inspect.signature(cls.__init__)
valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
return filtered_kwargs
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
target_pixels = int(base_resolution) * int(base_resolution)
original_width, original_height = Image.open(image).size
ratio = (target_pixels / (original_width * original_height)) ** 0.5
width_slider = round(original_width * ratio)
height_slider = round(original_height * ratio)
return height_slider, width_slider
def color_transfer(sc, dc):
"""
Transfer color distribution from of sc, referred to dc.
Args:
sc (numpy.ndarray): input image to be transfered.
dc (numpy.ndarray): reference image
Returns:
numpy.ndarray: Transferred color distribution on the sc.
"""
def get_mean_and_std(img):
x_mean, x_std = cv2.meanStdDev(img)
x_mean = np.hstack(np.around(x_mean, 2))
x_std = np.hstack(np.around(x_std, 2))
return x_mean, x_std
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB)
s_mean, s_std = get_mean_and_std(sc)
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB)
t_mean, t_std = get_mean_and_std(dc)
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean
np.putmask(img_n, img_n > 255, 255)
np.putmask(img_n, img_n < 0, 0)
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB)
return dst
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(Image.fromarray(x))
if color_transfer_post_process:
for i in range(1, len(outputs)):
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0])))
os.makedirs(os.path.dirname(path), exist_ok=True)
if imageio_backend:
if path.endswith("mp4"):
imageio.mimsave(path, outputs, fps=fps)
else:
imageio.mimsave(path, outputs, duration=(1000 * 1/fps))
else:
if path.endswith("mp4"):
path = path.replace('.mp4', '.gif')
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0)
def merge_video_audio(video_path: str, audio_path: str):
"""
Merge the video and audio into a new video, with the duration set to the shorter of the two,
and overwrite the original video file.
Parameters:
video_path (str): Path to the original video file
audio_path (str): Path to the audio file
"""
# check
if not os.path.exists(video_path):
raise FileNotFoundError(f"video file {video_path} does not exist")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"audio file {audio_path} does not exist")
base, ext = os.path.splitext(video_path)
temp_output = f"{base}_temp{ext}"
try:
# create ffmpeg command
command = [
'ffmpeg',
'-y', # overwrite
'-i',
video_path,
'-i',
audio_path,
'-c:v',
'copy', # copy video stream
'-c:a',
'aac', # use AAC audio encoder
'-b:a',
'192k', # set audio bitrate (optional)
'-map',
'0:v:0', # select the first video stream
'-map',
'1:a:0', # select the first audio stream
'-shortest', # choose the shortest duration
temp_output
]
# execute the command
print("Start merging video and audio...")
result = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# check result
if result.returncode != 0:
error_msg = f"FFmpeg execute failed: {result.stderr}"
print(error_msg)
raise RuntimeError(error_msg)
shutil.move(temp_output, video_path)
print(f"Merge completed, saved to {video_path}")
except Exception as e:
if os.path.exists(temp_output):
os.remove(temp_output)
print(f"merge_video_audio failed with error: {e}")
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
if validation_image_start is not None and validation_image_end is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
if type(validation_image_end) is str and os.path.isfile(validation_image_end):
image_end = Image.open(validation_image_end).convert("RGB")
image_end = image_end.resize([sample_size[1], sample_size[0]])
else:
image_end = validation_image_end
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end]
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
)
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:] = 255
if type(image_end) is list:
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end]
end_video = torch.cat(
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end],
dim=2
)
input_video[:, :, -len(end_video):] = end_video
input_video_mask[:, :, -len(image_end):] = 0
else:
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size)
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
input_video_mask[:, :, -1:] = 0
input_video = input_video / 255
elif validation_image_start is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
image_end = None
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video = input_video / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
) / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:, ] = 255
else:
image_start = None
image_end = None
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]])
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255
clip_image = None
del image_start
del image_end
gc.collect()
return input_video, input_video_mask, clip_image
def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None, ref_image=None):
if input_video_path is not None:
if isinstance(input_video_path, str):
cap = cv2.VideoCapture(input_video_path)
input_video = []
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip = 1 if fps is None else max(1,int(original_fps // fps))
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_skip == 0:
frame = cv2.resize(frame, (sample_size[1], sample_size[0]))
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frame_count += 1
cap.release()
else:
input_video = input_video_path
input_video = torch.from_numpy(np.array(input_video))[:video_length]
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
if validation_video_mask is not None:
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0]))
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255)
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
else:
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, :] = 255
else:
input_video, input_video_mask = None, None
if ref_image is not None:
if isinstance(ref_image, str):
clip_image = Image.open(ref_image).convert("RGB")
else:
clip_image = Image.fromarray(np.array(ref_image, np.uint8))
else:
clip_image = None
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
else:
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
return input_video, input_video_mask, ref_image, clip_image
def get_image_latent(ref_image=None, sample_size=None, padding=False):
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
if padding:
ref_image = padding_image(ref_image, sample_size[1], sample_size[0])
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
elif isinstance(ref_image, Image.Image):
ref_image = ref_image.convert("RGB")
if padding:
ref_image = padding_image(ref_image, sample_size[1], sample_size[0])
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
else:
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
return ref_image
def get_image(ref_image=None):
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
elif isinstance(ref_image, Image.Image):
ref_image = ref_image.convert("RGB")
return ref_image
def padding_image(images, new_width, new_height):
new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255))
aspect_ratio = images.width / images.height
if new_width / new_height > 1:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
else:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
resized_img = images.resize((new_img_width, new_img_height))
paste_x = (new_width - new_img_width) // 2
paste_y = (new_height - new_img_height) // 2
new_image.paste(resized_img, (paste_x, paste_y))
return new_image
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"function {func.__name__} running for {end_time - start_time} seconds")
return result
return wrapper
def timer_record(model_name=""):
def decorator(func):
def wrapper(*args, **kwargs):
torch.cuda.synchronize()
start_time = time.time()
result = func(*args, **kwargs)
torch.cuda.synchronize()
end_time = time.time()
import torch.distributed as dist
if dist.is_initialized():
if dist.get_rank() == 0:
time_sum = end_time - start_time
print('# --------------------------------------------------------- #')
print(f'# {model_name} time: {time_sum}s')
print('# --------------------------------------------------------- #')
_write_to_excel(model_name, time_sum)
else:
time_sum = end_time - start_time
print('# --------------------------------------------------------- #')
print(f'# {model_name} time: {time_sum}s')
print('# --------------------------------------------------------- #')
_write_to_excel(model_name, time_sum)
return result
return wrapper
return decorator
def _write_to_excel(model_name, time_sum):
import os
import pandas as pd
row_env = os.environ.get(f"{model_name}_EXCEL_ROW", "1") # 默认第1行
col_env = os.environ.get(f"{model_name}_EXCEL_COL", "1") # 默认第A列
file_path = os.environ.get("EXCEL_FILE", "timing_records.xlsx") # 默认文件名
try:
df = pd.read_excel(file_path, sheet_name="Sheet1", header=None)
except FileNotFoundError:
df = pd.DataFrame()
row_idx = int(row_env)
col_idx = int(col_env)
if row_idx >= len(df):
df = pd.concat([df, pd.DataFrame([ [None] * (len(df.columns) if not df.empty else 0) ] * (row_idx - len(df) + 1))], ignore_index=True)
if col_idx >= len(df.columns):
df = pd.concat([df, pd.DataFrame(columns=range(len(df.columns), col_idx + 1))], axis=1)
df.iloc[row_idx, col_idx] = time_sum
df.to_excel(file_path, index=False, header=False, sheet_name="Sheet1")
def get_autocast_dtype():
try:
if not torch.cuda.is_available():
print("CUDA not available, using float16 by default.")
return torch.float16
device = torch.cuda.current_device()
prop = torch.cuda.get_device_properties(device)
print(f"GPU: {prop.name}, Compute Capability: {prop.major}.{prop.minor}")
if prop.major >= 8:
if torch.cuda.is_bf16_supported():
print("Using bfloat16.")
return torch.bfloat16
else:
print("Compute capability >= 8.0 but bfloat16 not supported, falling back to float16.")
return torch.float16
else:
print("GPU does not support bfloat16 natively, using float16.")
return torch.float16
except Exception as e:
print(f"Error detecting GPU capability: {e}, falling back to float16.")
return torch.float16 |