Spaces:
Running
on
Zero
Running
on
Zero
File size: 56,560 Bytes
be751d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 |
# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_flux2.py
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import inspect
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (TimestepEmbedding, Timesteps,
apply_rotary_emb,
get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available,
is_torch_version, logging, scale_lora_layers,
unscale_lora_layers)
from ..dist import (Flux2MultiGPUsAttnProcessor2_0, get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group)
from .attention_utils import attention
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _get_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
encoder_query = encoder_key = encoder_value = None
if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
return query, key, value, encoder_query, encoder_key, encoder_value
def _get_qkv_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None):
return _get_projections(attn, hidden_states, encoder_hidden_states)
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
sequence_dim: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
if sequence_dim == 2:
cos = cos[None, None, :, :]
sin = sin[None, None, :, :]
elif sequence_dim == 1:
cos = cos[None, :, None, :]
sin = sin[None, :, None, :]
else:
raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.")
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
class Flux2SwiGLU(nn.Module):
"""
Flux 2 uses a SwiGLU-style activation in the transformer feedforward sub-blocks, but with the linear projection
layer fused into the first linear layer of the FF sub-block. Thus, this module has no trainable parameters.
"""
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
x = self.gate_fn(x1) * x2
return x
class Flux2FeedForward(nn.Module):
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: float = 3.0,
inner_dim: Optional[int] = None,
bias: bool = False,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out or dim
# Flux2SwiGLU will reduce the dimension by half
self.linear_in = nn.Linear(dim, inner_dim * 2, bias=bias)
self.act_fn = Flux2SwiGLU()
self.linear_out = nn.Linear(inner_dim, dim_out, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_in(x)
x = self.act_fn(x)
x = self.linear_out(x)
return x
class Flux2AttnProcessor:
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")
def __call__(
self,
attn: Union["Flux2Attention", "Flux2ParallelSelfAttention"],
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
text_seq_len: int = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Unified processor for both Flux2Attention and Flux2ParallelSelfAttention.
Args:
attn: Attention module (either Flux2Attention or Flux2ParallelSelfAttention)
hidden_states: Input hidden states
encoder_hidden_states: Optional encoder hidden states (only for Flux2Attention)
attention_mask: Optional attention mask
image_rotary_emb: Optional rotary embeddings
Returns:
For Flux2Attention with encoder_hidden_states: (hidden_states, encoder_hidden_states)
For Flux2Attention without encoder_hidden_states: hidden_states
For Flux2ParallelSelfAttention: hidden_states
"""
# Determine which type of attention we're processing
is_parallel_self_attn = hasattr(attn, 'to_qkv_mlp_proj') and attn.to_qkv_mlp_proj is not None
if is_parallel_self_attn:
# ============================================
# Parallel Self-Attention Path (with MLP)
# ============================================
# Parallel in (QKV + MLP in) projection
hidden_states = attn.to_qkv_mlp_proj(hidden_states)
qkv, mlp_hidden_states = torch.split(
hidden_states, [3 * attn.inner_dim, attn.mlp_hidden_dim * attn.mlp_mult_factor], dim=-1
)
# Handle the attention logic
query, key, value = qkv.chunk(3, dim=-1)
else:
# ============================================
# Standard Attention Path (possibly with encoder)
# ============================================
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
attn, hidden_states, encoder_hidden_states
)
# Common processing for query, key, value
query = query.unflatten(-1, (attn.heads, -1))
key = key.unflatten(-1, (attn.heads, -1))
value = value.unflatten(-1, (attn.heads, -1))
query = attn.norm_q(query)
key = attn.norm_k(key)
# Handle encoder projections (only for standard attention)
if not is_parallel_self_attn and attn.added_kv_proj_dim is not None:
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
encoder_query = attn.norm_added_q(encoder_query)
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([encoder_query, query], dim=1)
key = torch.cat([encoder_key, key], dim=1)
value = torch.cat([encoder_value, value], dim=1)
# Apply rotary embeddings
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
# Perform attention
hidden_states = attention(
query, key, value, attn_mask=attention_mask,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
if is_parallel_self_attn:
# ============================================
# Parallel Self-Attention Output Path
# ============================================
# Handle the feedforward (FF) logic
mlp_hidden_states = attn.mlp_act_fn(mlp_hidden_states)
# Concatenate and parallel output projection
hidden_states = torch.cat([hidden_states, mlp_hidden_states], dim=-1)
hidden_states = attn.to_out(hidden_states)
return hidden_states
else:
# ============================================
# Standard Attention Output Path
# ============================================
# Split encoder and latent hidden states if encoder was used
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
# Project output
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else:
return hidden_states
class Flux2Attention(torch.nn.Module):
_default_processor_cls = Flux2AttnProcessor
_available_processors = [Flux2AttnProcessor]
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
elementwise_affine: bool = True,
processor=None,
):
super().__init__()
self.head_dim = dim_head
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.out_dim = out_dim if out_dim is not None else query_dim
self.heads = out_dim // dim_head if out_dim is not None else heads
self.use_bias = bias
self.dropout = dropout
self.added_kv_proj_dim = added_kv_proj_dim
self.added_proj_bias = added_proj_bias
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
# QK Norm
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.to_out = torch.nn.ModuleList([])
self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(torch.nn.Dropout(dropout))
if added_kv_proj_dim is not None:
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)
if processor is None:
processor = self._default_processor_cls()
self.set_processor(processor)
def set_processor(self, processor: AttentionProcessor) -> None:
"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
class Flux2ParallelSelfAttention(torch.nn.Module):
"""
Flux 2 parallel self-attention for the Flux 2 single-stream transformer blocks.
This implements a parallel transformer block, where the attention QKV projections are fused to the feedforward (FF)
input projections, and the attention output projections are fused to the FF output projections. See the [ViT-22B
paper](https://arxiv.org/abs/2302.05442) for a visual depiction of this type of transformer block.
"""
_default_processor_cls = Flux2AttnProcessor
_available_processors = [Flux2AttnProcessor]
# Does not support QKV fusion as the QKV projections are always fused
_supports_qkv_fusion = False
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
elementwise_affine: bool = True,
mlp_ratio: float = 4.0,
mlp_mult_factor: int = 2,
processor=None,
):
super().__init__()
self.head_dim = dim_head
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.out_dim = out_dim if out_dim is not None else query_dim
self.heads = out_dim // dim_head if out_dim is not None else heads
self.use_bias = bias
self.dropout = dropout
self.mlp_ratio = mlp_ratio
self.mlp_hidden_dim = int(query_dim * self.mlp_ratio)
self.mlp_mult_factor = mlp_mult_factor
# Fused QKV projections + MLP input projection
self.to_qkv_mlp_proj = torch.nn.Linear(
self.query_dim, self.inner_dim * 3 + self.mlp_hidden_dim * self.mlp_mult_factor, bias=bias
)
self.mlp_act_fn = Flux2SwiGLU()
# QK Norm
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
# Fused attention output projection + MLP output projection
self.to_out = torch.nn.Linear(self.inner_dim + self.mlp_hidden_dim, self.out_dim, bias=out_bias)
if processor is None:
processor = self._default_processor_cls()
self.set_processor(processor)
def set_processor(self, processor: AttentionProcessor) -> None:
"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
logger.warning(
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
class Flux2SingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
):
super().__init__()
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
# Note that the MLP in/out linear layers are fused with the attention QKV/out projections, respectively; this
# is often called a "parallel" transformer block. See the [ViT-22B paper](https://arxiv.org/abs/2302.05442)
# for a visual depiction of this type of transformer block.
self.attn = Flux2ParallelSelfAttention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=bias,
out_bias=bias,
eps=eps,
mlp_ratio=mlp_ratio,
mlp_mult_factor=2,
processor=Flux2AttnProcessor(),
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor],
temb_mod_params: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# If encoder_hidden_states is None, hidden_states is assumed to have encoder_hidden_states already
# concatenated
if encoder_hidden_states is not None:
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
mod_shift, mod_scale, mod_gate = temb_mod_params
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
joint_attention_kwargs = joint_attention_kwargs or {}
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
text_seq_len=text_seq_len,
**joint_attention_kwargs,
)
hidden_states = hidden_states + mod_gate * attn_output
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
return encoder_hidden_states, hidden_states
class Flux2TransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.norm1_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.attn = Flux2Attention(
query_dim=dim,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=bias,
added_proj_bias=bias,
out_bias=bias,
eps=eps,
processor=Flux2AttnProcessor(),
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.ff = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
self.ff_context = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb_mod_params_img: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_params_txt: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
# Modulation parameters shape: [1, 1, self.dim]
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
# Img stream
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = (1 + scale_msa) * norm_hidden_states + shift_msa
# Conditioning txt stream
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
norm_encoder_hidden_states = (1 + c_scale_msa) * norm_encoder_hidden_states + c_shift_msa
# Attention on concatenated img + txt stream
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
attn_output, context_attn_output = attention_outputs
# Process attention outputs for the image stream (`hidden_states`).
attn_output = gate_msa * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_mlp * ff_output
# Process attention outputs for the text stream (`encoder_hidden_states`).
context_attn_output = c_gate_msa * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states
class Flux2PosEmbed(nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
# Expected ids shape: [S, len(self.axes_dim)]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
is_npu = ids.device.type == "npu"
freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
# Unlike Flux 1, loop over len(self.axes_dim) rather than ids.shape[-1]
for i in range(len(self.axes_dim)):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[..., i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin
class Flux2TimestepGuidanceEmbeddings(nn.Module):
def __init__(self, in_channels: int = 256, embedding_dim: int = 6144, bias: bool = False):
super().__init__()
self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
self.guidance_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(timestep.dtype)) # (N, D)
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
return time_guidance_emb
class Flux2Modulation(nn.Module):
def __init__(self, dim: int, mod_param_sets: int = 2, bias: bool = False):
super().__init__()
self.mod_param_sets = mod_param_sets
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
self.act_fn = nn.SiLU()
def forward(self, temb: torch.Tensor) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
mod = self.act_fn(temb)
mod = self.linear(mod)
if mod.ndim == 2:
mod = mod.unsqueeze(1)
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
# Return tuple of 3-tuples of modulation params shift/scale/gate
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
class Flux2Transformer2DModel(
ModelMixin,
ConfigMixin,
FromOriginalModelMixin,
):
"""
The Transformer model introduced in Flux 2.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Args:
patch_size (`int`, defaults to `1`):
Patch size to turn the input data into small patches.
in_channels (`int`, defaults to `128`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `None`):
The number of channels in the output. If not specified, it defaults to `in_channels`.
num_layers (`int`, defaults to `8`):
The number of layers of dual stream DiT blocks to use.
num_single_layers (`int`, defaults to `48`):
The number of layers of single stream DiT blocks to use.
attention_head_dim (`int`, defaults to `128`):
The number of dimensions to use for each attention head.
num_attention_heads (`int`, defaults to `48`):
The number of attention heads to use.
joint_attention_dim (`int`, defaults to `15360`):
The number of dimensions to use for the joint attention (embedding/channel dimension of
`encoder_hidden_states`).
pooled_projection_dim (`int`, defaults to `768`):
The number of dimensions to use for the pooled projection.
guidance_embeds (`bool`, defaults to `True`):
Whether to use guidance embeddings for guidance-distilled variant of the model.
axes_dims_rope (`Tuple[int]`, defaults to `(32, 32, 32, 32)`):
The dimensions to use for the rotary positional embeddings.
"""
_supports_gradient_checkpointing = True
# _no_split_modules = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]
# _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
# _repeated_blocks = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"]
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 128,
out_channels: Optional[int] = None,
num_layers: int = 8,
num_single_layers: int = 48,
attention_head_dim: int = 128,
num_attention_heads: int = 48,
joint_attention_dim: int = 15360,
timestep_guidance_channels: int = 256,
mlp_ratio: float = 3.0,
axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
rope_theta: int = 2000,
eps: float = 1e-6,
):
super().__init__()
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
# 1. Sinusoidal positional embedding for RoPE on image and text tokens
self.pos_embed = Flux2PosEmbed(theta=rope_theta, axes_dim=axes_dims_rope)
# 2. Combined timestep + guidance embedding
self.time_guidance_embed = Flux2TimestepGuidanceEmbeddings(
in_channels=timestep_guidance_channels, embedding_dim=self.inner_dim, bias=False
)
# 3. Modulation (double stream and single stream blocks share modulation parameters, resp.)
# Two sets of shift/scale/gate modulation parameters for the double stream attn and FF sub-blocks
self.double_stream_modulation_img = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
self.double_stream_modulation_txt = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False)
# Only one set of modulation parameters as the attn and FF sub-blocks are run in parallel for single stream
self.single_stream_modulation = Flux2Modulation(self.inner_dim, mod_param_sets=1, bias=False)
# 4. Input projections
self.x_embedder = nn.Linear(in_channels, self.inner_dim, bias=False)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim, bias=False)
# 5. Double Stream Transformer Blocks
self.transformer_blocks = nn.ModuleList(
[
Flux2TransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
bias=False,
)
for _ in range(num_layers)
]
)
# 6. Single Stream Transformer Blocks
self.single_transformer_blocks = nn.ModuleList(
[
Flux2SingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
bias=False,
)
for _ in range(num_single_layers)
]
)
# 7. Output layers
self.norm_out = AdaLayerNormContinuous(
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=eps, bias=False
)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
self.gradient_checkpointing = False
self.sp_world_size = 1
self.sp_world_rank = 0
def _set_gradient_checkpointing(self, *args, **kwargs):
if "value" in kwargs:
self.gradient_checkpointing = kwargs["value"]
elif "enable" in kwargs:
self.gradient_checkpointing = kwargs["enable"]
else:
raise ValueError("Invalid set gradient checkpointing")
def enable_multi_gpus_inference(self,):
self.sp_world_size = get_sequence_parallel_world_size()
self.sp_world_rank = get_sequence_parallel_rank()
self.all_gather = get_sp_group().all_gather
self.set_attn_processor(Flux2MultiGPUsAttnProcessor2_0())
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
Input `hidden_states`.
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 0. Handle input arguments
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
num_txt_tokens = encoder_hidden_states.shape[1]
# 1. Calculate timestep embedding and modulation parameters
timestep = timestep.to(hidden_states.dtype) * 1000
guidance = guidance.to(hidden_states.dtype) * 1000
temb = self.time_guidance_embed(timestep, guidance)
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
# 3. Calculate RoPE embeddings from image and text tokens
# NOTE: the below logic means that we can't support batched inference with images of different resolutions or
# text prompts of differents lengths. Is this a use case we want to support?
if img_ids.ndim == 3:
img_ids = img_ids[0]
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if is_torch_npu_available():
freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
else:
image_rotary_emb = self.pos_embed(img_ids)
text_rotary_emb = self.pos_embed(txt_ids)
concat_rotary_emb = (
torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),
)
# Context Parallel
if self.sp_world_size > 1:
hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank]
if concat_rotary_emb is not None:
txt_rotary_emb = (
concat_rotary_emb[0][:encoder_hidden_states.shape[1]],
concat_rotary_emb[1][:encoder_hidden_states.shape[1]]
)
concat_rotary_emb = (
torch.chunk(concat_rotary_emb[0][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
torch.chunk(concat_rotary_emb[1][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank],
)
concat_rotary_emb = [torch.cat([_txt_rotary_emb, _image_rotary_emb], dim=0) \
for _txt_rotary_emb, _image_rotary_emb in zip(txt_rotary_emb, concat_rotary_emb)]
# 4. Double Stream Transformer Blocks
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
double_stream_mod_img,
double_stream_mod_txt,
concat_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# 5. Single Stream Transformer Blocks
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
single_stream_mod,
concat_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# 6. Output layers
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if self.sp_world_size > 1:
output = self.all_gather(output, dim=1)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
@classmethod
def from_pretrained(
cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={},
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if "dict_mapping" in transformer_additional_kwargs.keys():
for key in transformer_additional_kwargs["dict_mapping"]:
transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key]
if low_cpu_mem_usage:
try:
import re
from diffusers import __version__ as diffusers_version
if diffusers_version >= "0.33.0":
from diffusers.models.model_loading_utils import \
load_model_dict_into_meta
else:
from diffusers.models.modeling_utils import \
load_model_dict_into_meta
from diffusers.utils import is_accelerate_available
if is_accelerate_available():
import accelerate
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model = cls.from_config(config, **transformer_additional_kwargs)
param_device = "cpu"
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
print(model_files_safetensors)
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
filtered_state_dict = {}
for key in state_dict:
if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size():
filtered_state_dict[key] = state_dict[key]
else:
print(f"Skipping key '{key}' due to size mismatch or absence in model.")
model_keys = set(model.state_dict().keys())
loaded_keys = set(filtered_state_dict.keys())
missing_keys = model_keys - loaded_keys
def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None):
initialized_dict = {}
with torch.no_grad():
for key in missing_keys:
param_shape = model_state_dict[key].shape
param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype
if 'weight' in key:
if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']):
initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
elif 'embedding' in key or 'embed' in key:
initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
elif 'head' in key or 'output' in key or 'proj_out' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif len(param_shape) >= 2:
initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype)
nn.init.xavier_uniform_(initialized_dict[key])
else:
initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02
elif 'bias' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif 'running_mean' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
elif 'running_var' in key:
initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype)
elif 'num_batches_tracked' in key:
initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long)
else:
initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype)
return initialized_dict
if missing_keys:
print(f"Missing keys will be initialized: {sorted(missing_keys)}")
initialized_params = initialize_missing_parameters(
missing_keys,
model.state_dict(),
torch_dtype
)
filtered_state_dict.update(initialized_params)
if diffusers_version >= "0.33.0":
# Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit:
# https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785.
load_model_dict_into_meta(
model,
filtered_state_dict,
dtype=torch_dtype,
model_name_or_path=pretrained_model_path,
)
else:
model._convert_deprecated_attention_blocks(filtered_state_dict)
unexpected_keys = load_model_dict_into_meta(
model,
filtered_state_dict,
device=param_device,
dtype=torch_dtype,
model_name_or_path=pretrained_model_path,
)
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
return model
except Exception as e:
print(
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead."
)
model = cls.from_config(config, **transformer_additional_kwargs)
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
print(m)
params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
print(f"### All Parameters: {sum(params) / 1e6} M")
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
model = model.to(torch_dtype)
return model |