Spaces:
Running
on
Zero
Running
on
Zero
| import base64 | |
| import gc | |
| import hashlib | |
| import io | |
| import os | |
| import tempfile | |
| from io import BytesIO | |
| import gradio as gr | |
| import requests | |
| import torch | |
| from fastapi import FastAPI | |
| from PIL import Image | |
| # Function to encode a file to Base64 | |
| def encode_file_to_base64(file_path): | |
| with open(file_path, "rb") as file: | |
| # Encode the data to Base64 | |
| file_base64 = base64.b64encode(file.read()) | |
| return file_base64 | |
| def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller): | |
| def _update_diffusion_transformer_api( | |
| datas: dict, | |
| ): | |
| diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none') | |
| try: | |
| controller.update_diffusion_transformer( | |
| diffusion_transformer_path | |
| ) | |
| comment = "Success" | |
| except Exception as e: | |
| torch.cuda.empty_cache() | |
| comment = f"Error. error information is {str(e)}" | |
| return {"message": comment} | |
| def download_from_url(url, timeout=10): | |
| try: | |
| response = requests.get(url, timeout=timeout) | |
| response.raise_for_status() # 检查请求是否成功 | |
| return response.content | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error downloading from {url}: {e}") | |
| return None | |
| def save_base64_video(base64_string): | |
| video_data = base64.b64decode(base64_string) | |
| md5_hash = hashlib.md5(video_data).hexdigest() | |
| filename = f"{md5_hash}.mp4" | |
| temp_dir = tempfile.gettempdir() | |
| file_path = os.path.join(temp_dir, filename) | |
| with open(file_path, 'wb') as video_file: | |
| video_file.write(video_data) | |
| return file_path | |
| def save_base64_image(base64_string): | |
| video_data = base64.b64decode(base64_string) | |
| md5_hash = hashlib.md5(video_data).hexdigest() | |
| filename = f"{md5_hash}.jpg" | |
| temp_dir = tempfile.gettempdir() | |
| file_path = os.path.join(temp_dir, filename) | |
| with open(file_path, 'wb') as video_file: | |
| video_file.write(video_data) | |
| return file_path | |
| def save_url_video(url): | |
| video_data = download_from_url(url) | |
| if video_data: | |
| return save_base64_video(base64.b64encode(video_data)) | |
| return None | |
| def save_url_image(url): | |
| image_data = download_from_url(url) | |
| if image_data: | |
| return save_base64_image(base64.b64encode(image_data)) | |
| return None | |
| def infer_forward_api(_: gr.Blocks, app: FastAPI, controller): | |
| def _infer_forward_api( | |
| datas: dict, | |
| ): | |
| base_model_path = datas.get('base_model_path', 'none') | |
| base_model_2_path = datas.get('base_model_2_path', 'none') | |
| lora_model_path = datas.get('lora_model_path', 'none') | |
| lora_model_2_path = datas.get('lora_model_2_path', 'none') | |
| lora_alpha_slider = datas.get('lora_alpha_slider', 0.55) | |
| prompt_textbox = datas.get('prompt_textbox', None) | |
| negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. ') | |
| sampler_dropdown = datas.get('sampler_dropdown', 'Euler') | |
| sample_step_slider = datas.get('sample_step_slider', 30) | |
| resize_method = datas.get('resize_method', "Generate by") | |
| width_slider = datas.get('width_slider', 672) | |
| height_slider = datas.get('height_slider', 384) | |
| base_resolution = datas.get('base_resolution', 512) | |
| is_image = datas.get('is_image', False) | |
| generation_method = datas.get('generation_method', False) | |
| length_slider = datas.get('length_slider', 49) | |
| overlap_video_length = datas.get('overlap_video_length', 4) | |
| partial_video_length = datas.get('partial_video_length', 72) | |
| cfg_scale_slider = datas.get('cfg_scale_slider', 6) | |
| start_image = datas.get('start_image', None) | |
| end_image = datas.get('end_image', None) | |
| validation_video = datas.get('validation_video', None) | |
| validation_video_mask = datas.get('validation_video_mask', None) | |
| control_video = datas.get('control_video', None) | |
| denoise_strength = datas.get('denoise_strength', 0.70) | |
| seed_textbox = datas.get("seed_textbox", 43) | |
| ref_image = datas.get('ref_image', None) | |
| enable_teacache = datas.get('enable_teacache', True) | |
| teacache_threshold = datas.get('teacache_threshold', 0.10) | |
| num_skip_start_steps = datas.get('num_skip_start_steps', 1) | |
| teacache_offload = datas.get('teacache_offload', False) | |
| cfg_skip_ratio = datas.get('cfg_skip_ratio', 0) | |
| enable_riflex = datas.get('enable_riflex', False) | |
| riflex_k = datas.get('riflex_k', 6) | |
| fps = datas.get('fps', None) | |
| generation_method = "Image Generation" if is_image else generation_method | |
| if start_image is not None: | |
| if start_image.startswith('http'): | |
| start_image = save_url_image(start_image) | |
| start_image = [Image.open(start_image).convert("RGB")] | |
| else: | |
| start_image = base64.b64decode(start_image) | |
| start_image = [Image.open(BytesIO(start_image)).convert("RGB")] | |
| if end_image is not None: | |
| if end_image.startswith('http'): | |
| end_image = save_url_image(end_image) | |
| end_image = [Image.open(end_image).convert("RGB")] | |
| else: | |
| end_image = base64.b64decode(end_image) | |
| end_image = [Image.open(BytesIO(end_image)).convert("RGB")] | |
| if validation_video is not None: | |
| if validation_video.startswith('http'): | |
| validation_video = save_url_video(validation_video) | |
| else: | |
| validation_video = save_base64_video(validation_video) | |
| if validation_video_mask is not None: | |
| if validation_video_mask.startswith('http'): | |
| validation_video_mask = save_url_image(validation_video_mask) | |
| else: | |
| validation_video_mask = save_base64_image(validation_video_mask) | |
| if control_video is not None: | |
| if control_video.startswith('http'): | |
| control_video = save_url_video(control_video) | |
| else: | |
| control_video = save_base64_video(control_video) | |
| if ref_image is not None: | |
| if ref_image.startswith('http'): | |
| ref_image = save_url_image(ref_image) | |
| ref_image = [Image.open(ref_image).convert("RGB")] | |
| else: | |
| ref_image = base64.b64decode(ref_image) | |
| ref_image = [Image.open(BytesIO(ref_image)).convert("RGB")] | |
| try: | |
| save_sample_path, comment = controller.generate( | |
| "", | |
| base_model_path, | |
| lora_model_path, | |
| lora_alpha_slider, | |
| prompt_textbox, | |
| negative_prompt_textbox, | |
| sampler_dropdown, | |
| sample_step_slider, | |
| resize_method, | |
| width_slider, | |
| height_slider, | |
| base_resolution, | |
| generation_method, | |
| length_slider, | |
| overlap_video_length, | |
| partial_video_length, | |
| cfg_scale_slider, | |
| start_image, | |
| end_image, | |
| validation_video, | |
| validation_video_mask, | |
| control_video, | |
| denoise_strength, | |
| seed_textbox, | |
| ref_image = ref_image, | |
| enable_teacache = enable_teacache, | |
| teacache_threshold = teacache_threshold, | |
| num_skip_start_steps = num_skip_start_steps, | |
| teacache_offload = teacache_offload, | |
| cfg_skip_ratio = cfg_skip_ratio, | |
| enable_riflex = enable_riflex, | |
| riflex_k = riflex_k, | |
| base_model_2_dropdown = base_model_2_path, | |
| lora_model_2_dropdown = lora_model_2_path, | |
| fps = fps, | |
| is_api = True, | |
| ) | |
| except Exception as e: | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| save_sample_path = "" | |
| comment = f"Error. error information is {str(e)}" | |
| return {"message": comment, "save_sample_path": None, "base64_encoding": None} | |
| if save_sample_path != "": | |
| return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)} | |
| else: | |
| return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": None} |