Spaces:
Running
on
Zero
Running
on
Zero
| import csv | |
| import gc | |
| import io | |
| import json | |
| import math | |
| import os | |
| import random | |
| from contextlib import contextmanager | |
| from random import shuffle | |
| from threading import Thread | |
| import albumentations | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms as transforms | |
| from decord import VideoReader | |
| from einops import rearrange | |
| from func_timeout import FunctionTimedOut, func_timeout | |
| from packaging import version as pver | |
| from PIL import Image | |
| from safetensors.torch import load_file | |
| from torch.utils.data import BatchSampler, Sampler | |
| from torch.utils.data.dataset import Dataset | |
| VIDEO_READER_TIMEOUT = 20 | |
| def get_random_mask(shape, image_start_only=False): | |
| f, c, h, w = shape | |
| mask = torch.zeros((f, 1, h, w), dtype=torch.uint8) | |
| if not image_start_only: | |
| if f != 1: | |
| mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05]) | |
| else: | |
| mask_index = np.random.choice([0, 1, 7, 8], p = [0.2, 0.7, 0.05, 0.05]) | |
| if mask_index == 0: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围 | |
| block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围 | |
| start_x = max(center_x - block_size_x // 2, 0) | |
| end_x = min(center_x + block_size_x // 2, w) | |
| start_y = max(center_y - block_size_y // 2, 0) | |
| end_y = min(center_y + block_size_y // 2, h) | |
| mask[:, :, start_y:end_y, start_x:end_x] = 1 | |
| elif mask_index == 1: | |
| mask[:, :, :, :] = 1 | |
| elif mask_index == 2: | |
| mask_frame_index = np.random.randint(1, 5) | |
| mask[mask_frame_index:, :, :, :] = 1 | |
| elif mask_index == 3: | |
| mask_frame_index = np.random.randint(1, 5) | |
| mask[mask_frame_index:-mask_frame_index, :, :, :] = 1 | |
| elif mask_index == 4: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围 | |
| block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围 | |
| start_x = max(center_x - block_size_x // 2, 0) | |
| end_x = min(center_x + block_size_x // 2, w) | |
| start_y = max(center_y - block_size_y // 2, 0) | |
| end_y = min(center_y + block_size_y // 2, h) | |
| mask_frame_before = np.random.randint(0, f // 2) | |
| mask_frame_after = np.random.randint(f // 2, f) | |
| mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1 | |
| elif mask_index == 5: | |
| mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8) | |
| elif mask_index == 6: | |
| num_frames_to_mask = random.randint(1, max(f // 2, 1)) | |
| frames_to_mask = random.sample(range(f), num_frames_to_mask) | |
| for i in frames_to_mask: | |
| block_height = random.randint(1, h // 4) | |
| block_width = random.randint(1, w // 4) | |
| top_left_y = random.randint(0, h - block_height) | |
| top_left_x = random.randint(0, w - block_width) | |
| mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1 | |
| elif mask_index == 7: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴 | |
| b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴 | |
| for i in range(h): | |
| for j in range(w): | |
| if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1: | |
| mask[:, :, i, j] = 1 | |
| elif mask_index == 8: | |
| center_x = torch.randint(0, w, (1,)).item() | |
| center_y = torch.randint(0, h, (1,)).item() | |
| radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() | |
| for i in range(h): | |
| for j in range(w): | |
| if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2: | |
| mask[:, :, i, j] = 1 | |
| elif mask_index == 9: | |
| for idx in range(f): | |
| if np.random.rand() > 0.5: | |
| mask[idx, :, :, :] = 1 | |
| else: | |
| raise ValueError(f"The mask_index {mask_index} is not define") | |
| else: | |
| if f != 1: | |
| mask[1:, :, :, :] = 1 | |
| else: | |
| mask[:, :, :, :] = 1 | |
| return mask | |
| def VideoReader_contextmanager(*args, **kwargs): | |
| vr = VideoReader(*args, **kwargs) | |
| try: | |
| yield vr | |
| finally: | |
| del vr | |
| gc.collect() | |
| def get_video_reader_batch(video_reader, batch_index): | |
| frames = video_reader.get_batch(batch_index).asnumpy() | |
| return frames | |
| def resize_frame(frame, target_short_side): | |
| h, w, _ = frame.shape | |
| if h < w: | |
| if target_short_side > h: | |
| return frame | |
| new_h = target_short_side | |
| new_w = int(target_short_side * w / h) | |
| else: | |
| if target_short_side > w: | |
| return frame | |
| new_w = target_short_side | |
| new_h = int(target_short_side * h / w) | |
| resized_frame = cv2.resize(frame, (new_w, new_h)) | |
| return resized_frame | |
| def padding_image(images, new_width, new_height): | |
| new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255)) | |
| aspect_ratio = images.width / images.height | |
| if new_width / new_height > 1: | |
| if aspect_ratio > new_width / new_height: | |
| new_img_width = new_width | |
| new_img_height = int(new_img_width / aspect_ratio) | |
| else: | |
| new_img_height = new_height | |
| new_img_width = int(new_img_height * aspect_ratio) | |
| else: | |
| if aspect_ratio > new_width / new_height: | |
| new_img_width = new_width | |
| new_img_height = int(new_img_width / aspect_ratio) | |
| else: | |
| new_img_height = new_height | |
| new_img_width = int(new_img_height * aspect_ratio) | |
| resized_img = images.resize((new_img_width, new_img_height)) | |
| paste_x = (new_width - new_img_width) // 2 | |
| paste_y = (new_height - new_img_height) // 2 | |
| new_image.paste(resized_img, (paste_x, paste_y)) | |
| return new_image | |
| def resize_image_with_target_area(img: Image.Image, target_area: int = 1024 * 1024) -> Image.Image: | |
| """ | |
| 将 PIL 图像缩放到接近指定像素面积(target_area),保持原始宽高比, | |
| 并确保新宽度和高度均为 32 的整数倍。 | |
| 参数: | |
| img (PIL.Image.Image): 输入图像 | |
| target_area (int): 目标像素总面积,例如 1024*1024 = 1048576 | |
| 返回: | |
| PIL.Image.Image: Resize 后的图像 | |
| """ | |
| orig_w, orig_h = img.size | |
| if orig_w == 0 or orig_h == 0: | |
| raise ValueError("Input image has zero width or height.") | |
| ratio = orig_w / orig_h | |
| ideal_width = math.sqrt(target_area * ratio) | |
| ideal_height = ideal_width / ratio | |
| new_width = round(ideal_width / 32) * 32 | |
| new_height = round(ideal_height / 32) * 32 | |
| new_width = max(32, new_width) | |
| new_height = max(32, new_height) | |
| new_width = int(new_width) | |
| new_height = int(new_height) | |
| resized_img = img.resize((new_width, new_height), Image.LANCZOS) | |
| return resized_img | |
| class Camera(object): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| def __init__(self, entry): | |
| fx, fy, cx, cy = entry[1:5] | |
| self.fx = fx | |
| self.fy = fy | |
| self.cx = cx | |
| self.cy = cy | |
| w2c_mat = np.array(entry[7:]).reshape(3, 4) | |
| w2c_mat_4x4 = np.eye(4) | |
| w2c_mat_4x4[:3, :] = w2c_mat | |
| self.w2c_mat = w2c_mat_4x4 | |
| self.c2w_mat = np.linalg.inv(w2c_mat_4x4) | |
| def custom_meshgrid(*args): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid | |
| if pver.parse(torch.__version__) < pver.parse('1.10'): | |
| return torch.meshgrid(*args) | |
| else: | |
| return torch.meshgrid(*args, indexing='ij') | |
| def get_relative_pose(cam_params): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] | |
| abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] | |
| cam_to_origin = 0 | |
| target_cam_c2w = np.array([ | |
| [1, 0, 0, 0], | |
| [0, 1, 0, -cam_to_origin], | |
| [0, 0, 1, 0], | |
| [0, 0, 0, 1] | |
| ]) | |
| abs2rel = target_cam_c2w @ abs_w2cs[0] | |
| ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] | |
| ret_poses = np.array(ret_poses, dtype=np.float32) | |
| return ret_poses | |
| def ray_condition(K, c2w, H, W, device): | |
| """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| # c2w: B, V, 4, 4 | |
| # K: B, V, 4 | |
| B = K.shape[0] | |
| j, i = custom_meshgrid( | |
| torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), | |
| torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), | |
| ) | |
| i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] | |
| fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1 | |
| zs = torch.ones_like(i) # [B, HxW] | |
| xs = (i - cx) / fx * zs | |
| ys = (j - cy) / fy * zs | |
| zs = zs.expand_as(ys) | |
| directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3 | |
| directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3 | |
| rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW | |
| rays_o = c2w[..., :3, 3] # B, V, 3 | |
| rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW | |
| # c2w @ dirctions | |
| rays_dxo = torch.cross(rays_o, rays_d) | |
| plucker = torch.cat([rays_dxo, rays_d], dim=-1) | |
| plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6 | |
| # plucker = plucker.permute(0, 1, 4, 2, 3) | |
| return plucker | |
| def process_pose_file(pose_file_path, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False): | |
| """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| with open(pose_file_path, 'r') as f: | |
| poses = f.readlines() | |
| poses = [pose.strip().split(' ') for pose in poses[1:]] | |
| cam_params = [[float(x) for x in pose] for pose in poses] | |
| if return_poses: | |
| return cam_params | |
| else: | |
| cam_params = [Camera(cam_param) for cam_param in cam_params] | |
| sample_wh_ratio = width / height | |
| pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed | |
| if pose_wh_ratio > sample_wh_ratio: | |
| resized_ori_w = height * pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fx = resized_ori_w * cam_param.fx / width | |
| else: | |
| resized_ori_h = width / pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fy = resized_ori_h * cam_param.fy / height | |
| intrinsic = np.asarray([[cam_param.fx * width, | |
| cam_param.fy * height, | |
| cam_param.cx * width, | |
| cam_param.cy * height] | |
| for cam_param in cam_params], dtype=np.float32) | |
| K = torch.as_tensor(intrinsic)[None] # [1, 1, 4] | |
| c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere | |
| c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4] | |
| plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W | |
| plucker_embedding = plucker_embedding[None] | |
| plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] | |
| return plucker_embedding | |
| def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'): | |
| """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py | |
| """ | |
| cam_params = [Camera(cam_param) for cam_param in cam_params] | |
| sample_wh_ratio = width / height | |
| pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed | |
| if pose_wh_ratio > sample_wh_ratio: | |
| resized_ori_w = height * pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fx = resized_ori_w * cam_param.fx / width | |
| else: | |
| resized_ori_h = width / pose_wh_ratio | |
| for cam_param in cam_params: | |
| cam_param.fy = resized_ori_h * cam_param.fy / height | |
| intrinsic = np.asarray([[cam_param.fx * width, | |
| cam_param.fy * height, | |
| cam_param.cx * width, | |
| cam_param.cy * height] | |
| for cam_param in cam_params], dtype=np.float32) | |
| K = torch.as_tensor(intrinsic)[None] # [1, 1, 4] | |
| c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere | |
| c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4] | |
| plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W | |
| plucker_embedding = plucker_embedding[None] | |
| plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] | |
| return plucker_embedding |