ZIT-Controlnet / videox_fun /dist /hunyuanvideo_xfuser.py
Alexander Bagus
22
26893dc
raw
history blame
7.06 kB
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention import Attention
from diffusers.models.embeddings import apply_rotary_emb
from .fuser import (get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group,
init_distributed_environment, initialize_model_parallel,
xFuserLongContextAttention)
def extract_seqlens_from_mask(attn_mask, text_seq_length):
if attn_mask is None:
return None
if len(attn_mask.shape) == 4:
bs, _, _, seq_len = attn_mask.shape
if attn_mask.dtype == torch.bool:
valid_mask = attn_mask.squeeze(1).squeeze(1)
else:
valid_mask = ~torch.isinf(attn_mask.squeeze(1).squeeze(1))
elif len(attn_mask.shape) == 3:
raise ValueError(
"attn_mask should be 2D or 4D tensor, but got {}".format(
attn_mask.shape))
seqlens = valid_mask[:, -text_seq_length:].sum(dim=1)
return seqlens
class HunyuanVideoMultiGPUsAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
query and key vectors, but does not include spatial normalization.
"""
def __init__(self):
if xFuserLongContextAttention is not None:
try:
self.hybrid_seq_parallel_attn = xFuserLongContextAttention()
except Exception:
self.hybrid_seq_parallel_attn = None
else:
self.hybrid_seq_parallel_attn = None
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if attn.add_q_proj is None and encoder_hidden_states is not None:
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
# 1. QKV projections
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
# 2. QK normalization
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# 3. Rotational positional embeddings applied to latent stream
if image_rotary_emb is not None:
if attn.add_q_proj is None and encoder_hidden_states is not None:
query = torch.cat(
[
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
query[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
key = torch.cat(
[
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
key[:, :, -encoder_hidden_states.shape[1] :],
],
dim=2,
)
else:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# 4. Encoder condition QKV projection and normalization
if attn.add_q_proj is not None and encoder_hidden_states is not None:
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
# 5. Attention
if encoder_hidden_states is not None:
text_seq_length = encoder_hidden_states.size(1)
q_lens = k_lens = extract_seqlens_from_mask(attention_mask, text_seq_length)
img_q = query[:, :, :-text_seq_length].transpose(1, 2)
txt_q = query[:, :, -text_seq_length:].transpose(1, 2)
img_k = key[:, :, :-text_seq_length].transpose(1, 2)
txt_k = key[:, :, -text_seq_length:].transpose(1, 2)
img_v = value[:, :, :-text_seq_length].transpose(1, 2)
txt_v = value[:, :, -text_seq_length:].transpose(1, 2)
hidden_states = torch.zeros_like(query.transpose(1, 2))
local_q_length = img_q.size()[1]
for i in range(len(q_lens)):
hidden_states[i][:local_q_length + q_lens[i]] = self.hybrid_seq_parallel_attn(
None,
img_q[i].unsqueeze(0), img_k[i].unsqueeze(0), img_v[i].unsqueeze(0), dropout_p=0.0, causal=False,
joint_tensor_query=txt_q[i][:q_lens[i]].unsqueeze(0),
joint_tensor_key=txt_k[i][:q_lens[i]].unsqueeze(0),
joint_tensor_value=txt_v[i][:q_lens[i]].unsqueeze(0),
joint_strategy='rear',
)
else:
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
hidden_states = self.hybrid_seq_parallel_attn(
None,
query, key, value, dropout_p=0.0, causal=False
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
# 6. Output projection
if encoder_hidden_states is not None:
hidden_states, encoder_hidden_states = (
hidden_states[:, : -encoder_hidden_states.shape[1]],
hidden_states[:, -encoder_hidden_states.shape[1] :],
)
if getattr(attn, "to_out", None) is not None:
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
if getattr(attn, "to_add_out", None) is not None:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states