Spaces:
Running
on
Zero
Running
on
Zero
| # Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | |
| # Copyright 2025 The Hunyuan Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import glob | |
| import json | |
| import os | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalModelMixin | |
| from diffusers.models.attention import FeedForward | |
| from diffusers.models.attention_processor import Attention, AttentionProcessor | |
| from diffusers.models.embeddings import (CombinedTimestepTextProjEmbeddings, | |
| PixArtAlphaTextProjection, | |
| TimestepEmbedding, Timesteps, | |
| get_1d_rotary_pos_embed) | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import (AdaLayerNormContinuous, | |
| AdaLayerNormZero, | |
| AdaLayerNormZeroSingle, | |
| FP32LayerNorm) | |
| from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging, | |
| scale_lora_layers, unscale_lora_layers) | |
| from ..dist import (get_sequence_parallel_rank, | |
| get_sequence_parallel_world_size, get_sp_group, | |
| xFuserLongContextAttention) | |
| from ..dist.hunyuanvideo_xfuser import HunyuanVideoMultiGPUsAttnProcessor2_0 | |
| from .attention_utils import attention | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def apply_rotary_emb( | |
| x: torch.Tensor, | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| use_real: bool = True, | |
| use_real_unbind_dim: int = -1, | |
| sequence_dim: int = 2, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
| to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
| reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
| tensors contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x (`torch.Tensor`): | |
| Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
| freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| if use_real: | |
| cos, sin = freqs_cis # [S, D] | |
| if sequence_dim == 2: | |
| cos = cos[None, None, :, :] | |
| sin = sin[None, None, :, :] | |
| elif sequence_dim == 1: | |
| cos = cos[None, :, None, :] | |
| sin = sin[None, :, None, :] | |
| else: | |
| raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.") | |
| cos, sin = cos.to(x.device), sin.to(x.device) | |
| if use_real_unbind_dim == -1: | |
| # Used for flux, cogvideox, hunyuan-dit | |
| x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2] | |
| x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| elif use_real_unbind_dim == -2: | |
| # Used for Stable Audio, OmniGen, CogView4 and Cosmos | |
| x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2] | |
| x_rotated = torch.cat([-x_imag, x_real], dim=-1) | |
| else: | |
| raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | |
| out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
| return out | |
| else: | |
| # used for lumina | |
| x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
| freqs_cis = freqs_cis.unsqueeze(2) | |
| x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
| return x_out.type_as(x) | |
| def extract_seqlens_from_mask(attn_mask): | |
| if attn_mask is None: | |
| return None | |
| if len(attn_mask.shape) == 4: | |
| bs, _, _, seq_len = attn_mask.shape | |
| if attn_mask.dtype == torch.bool: | |
| valid_mask = attn_mask.squeeze(1).squeeze(1) | |
| else: | |
| valid_mask = ~torch.isinf(attn_mask.squeeze(1).squeeze(1)) | |
| elif len(attn_mask.shape) == 3: | |
| raise ValueError( | |
| "attn_mask should be 2D or 4D tensor, but got {}".format( | |
| attn_mask.shape)) | |
| seqlens = valid_mask.sum(dim=1) | |
| return seqlens | |
| class HunyuanVideoAttnProcessor2_0: | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if attn.add_q_proj is None and encoder_hidden_states is not None: | |
| hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
| # 1. QKV projections | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| # 2. QK normalization | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # 3. Rotational positional embeddings applied to latent stream | |
| if image_rotary_emb is not None: | |
| if attn.add_q_proj is None and encoder_hidden_states is not None: | |
| query = torch.cat( | |
| [ | |
| apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
| query[:, :, -encoder_hidden_states.shape[1] :], | |
| ], | |
| dim=2, | |
| ) | |
| key = torch.cat( | |
| [ | |
| apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), | |
| key[:, :, -encoder_hidden_states.shape[1] :], | |
| ], | |
| dim=2, | |
| ) | |
| else: | |
| query = apply_rotary_emb(query, image_rotary_emb) | |
| key = apply_rotary_emb(key, image_rotary_emb) | |
| # 4. Encoder condition QKV projection and normalization | |
| if attn.add_q_proj is not None and encoder_hidden_states is not None: | |
| encoder_query = attn.add_q_proj(encoder_hidden_states) | |
| encoder_key = attn.add_k_proj(encoder_hidden_states) | |
| encoder_value = attn.add_v_proj(encoder_hidden_states) | |
| encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| if attn.norm_added_q is not None: | |
| encoder_query = attn.norm_added_q(encoder_query) | |
| if attn.norm_added_k is not None: | |
| encoder_key = attn.norm_added_k(encoder_key) | |
| query = torch.cat([query, encoder_query], dim=2) | |
| key = torch.cat([key, encoder_key], dim=2) | |
| value = torch.cat([value, encoder_value], dim=2) | |
| # 5. Attention | |
| query = query.transpose(1, 2) | |
| key = key.transpose(1, 2) | |
| value = value.transpose(1, 2) | |
| if attention_mask is not None: | |
| q_lens = k_lens = extract_seqlens_from_mask(attention_mask) | |
| hidden_states = torch.zeros_like(query) | |
| for i in range(len(q_lens)): | |
| hidden_states[i][:q_lens[i]] = attention( | |
| query[i][:q_lens[i]].unsqueeze(0), | |
| key[i][:q_lens[i]].unsqueeze(0), | |
| value[i][:q_lens[i]].unsqueeze(0), | |
| attn_mask=None, | |
| ) | |
| else: | |
| hidden_states = attention( | |
| query, key, value, attn_mask=attention_mask, | |
| ) | |
| hidden_states = hidden_states.flatten(2, 3) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # 6. Output projection | |
| if encoder_hidden_states is not None: | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, : -encoder_hidden_states.shape[1]], | |
| hidden_states[:, -encoder_hidden_states.shape[1] :], | |
| ) | |
| if getattr(attn, "to_out", None) is not None: | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if getattr(attn, "to_add_out", None) is not None: | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| class HunyuanVideoPatchEmbed(nn.Module): | |
| def __init__( | |
| self, | |
| patch_size: Union[int, Tuple[int, int, int]] = 16, | |
| in_chans: int = 3, | |
| embed_dim: int = 768, | |
| ) -> None: | |
| super().__init__() | |
| patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size | |
| self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC | |
| return hidden_states | |
| class HunyuanVideoAdaNorm(nn.Module): | |
| def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: | |
| super().__init__() | |
| out_features = out_features or 2 * in_features | |
| self.linear = nn.Linear(in_features, out_features) | |
| self.nonlinearity = nn.SiLU() | |
| def forward( | |
| self, temb: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| temb = self.linear(self.nonlinearity(temb)) | |
| gate_msa, gate_mlp = temb.chunk(2, dim=1) | |
| gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) | |
| return gate_msa, gate_mlp | |
| class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module): | |
| def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
| elif norm_type == "fp32_layer_norm": | |
| self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) | |
| else: | |
| raise ValueError( | |
| f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| emb: torch.Tensor, | |
| token_replace_emb: torch.Tensor, | |
| first_frame_num_tokens: int, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| emb = self.linear(self.silu(emb)) | |
| token_replace_emb = self.linear(self.silu(token_replace_emb)) | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
| tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk( | |
| 6, dim=1 | |
| ) | |
| norm_hidden_states = self.norm(hidden_states) | |
| hidden_states_zero = ( | |
| norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] | |
| ) | |
| hidden_states_orig = ( | |
| norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
| ) | |
| hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| return ( | |
| hidden_states, | |
| gate_msa, | |
| shift_mlp, | |
| scale_mlp, | |
| gate_mlp, | |
| tr_gate_msa, | |
| tr_shift_mlp, | |
| tr_scale_mlp, | |
| tr_gate_mlp, | |
| ) | |
| class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module): | |
| def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
| else: | |
| raise ValueError( | |
| f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| emb: torch.Tensor, | |
| token_replace_emb: torch.Tensor, | |
| first_frame_num_tokens: int, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| emb = self.linear(self.silu(emb)) | |
| token_replace_emb = self.linear(self.silu(token_replace_emb)) | |
| shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) | |
| tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1) | |
| norm_hidden_states = self.norm(hidden_states) | |
| hidden_states_zero = ( | |
| norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] | |
| ) | |
| hidden_states_orig = ( | |
| norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
| ) | |
| hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| return hidden_states, gate_msa, tr_gate_msa | |
| class HunyuanVideoConditionEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| pooled_projection_dim: int, | |
| guidance_embeds: bool, | |
| image_condition_type: Optional[str] = None, | |
| ): | |
| super().__init__() | |
| self.image_condition_type = image_condition_type | |
| self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
| self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") | |
| self.guidance_embedder = None | |
| if guidance_embeds: | |
| self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
| def forward( | |
| self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| timesteps_proj = self.time_proj(timestep) | |
| timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) | |
| pooled_projections = self.text_embedder(pooled_projection) | |
| conditioning = timesteps_emb + pooled_projections | |
| token_replace_emb = None | |
| if self.image_condition_type == "token_replace": | |
| token_replace_timestep = torch.zeros_like(timestep) | |
| token_replace_proj = self.time_proj(token_replace_timestep) | |
| token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype)) | |
| token_replace_emb = token_replace_emb + pooled_projections | |
| if self.guidance_embedder is not None: | |
| guidance_proj = self.time_proj(guidance) | |
| guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) | |
| conditioning = conditioning + guidance_emb | |
| return conditioning, token_replace_emb | |
| class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| mlp_width_ratio: str = 4.0, | |
| mlp_drop_rate: float = 0.0, | |
| attention_bias: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) | |
| self.attn = Attention( | |
| query_dim=hidden_size, | |
| cross_attention_dim=None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| bias=attention_bias, | |
| ) | |
| self.attn.set_processor = None | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) | |
| self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) | |
| self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=attention_mask, | |
| ) | |
| gate_msa, gate_mlp = self.norm_out(temb) | |
| hidden_states = hidden_states + attn_output * gate_msa | |
| ff_output = self.ff(self.norm2(hidden_states)) | |
| hidden_states = hidden_states + ff_output * gate_mlp | |
| return hidden_states | |
| class HunyuanVideoIndividualTokenRefiner(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| num_layers: int, | |
| mlp_width_ratio: float = 4.0, | |
| mlp_drop_rate: float = 0.0, | |
| attention_bias: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.refiner_blocks = nn.ModuleList( | |
| [ | |
| HunyuanVideoIndividualTokenRefinerBlock( | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| mlp_width_ratio=mlp_width_ratio, | |
| mlp_drop_rate=mlp_drop_rate, | |
| attention_bias=attention_bias, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| ) -> None: | |
| self_attn_mask = None | |
| if attention_mask is not None: | |
| batch_size = attention_mask.shape[0] | |
| seq_len = attention_mask.shape[1] | |
| attention_mask = attention_mask.to(hidden_states.device).bool() | |
| self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) | |
| self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) | |
| self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() | |
| self_attn_mask[:, :, :, 0] = True | |
| for block in self.refiner_blocks: | |
| hidden_states = block(hidden_states, temb, self_attn_mask) | |
| return hidden_states | |
| class HunyuanVideoTokenRefiner(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| num_layers: int, | |
| mlp_ratio: float = 4.0, | |
| mlp_drop_rate: float = 0.0, | |
| attention_bias: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| self.time_text_embed = CombinedTimestepTextProjEmbeddings( | |
| embedding_dim=hidden_size, pooled_projection_dim=in_channels | |
| ) | |
| self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) | |
| self.token_refiner = HunyuanVideoIndividualTokenRefiner( | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| num_layers=num_layers, | |
| mlp_width_ratio=mlp_ratio, | |
| mlp_drop_rate=mlp_drop_rate, | |
| attention_bias=attention_bias, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.LongTensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| ) -> torch.Tensor: | |
| if attention_mask is None: | |
| pooled_projections = hidden_states.mean(dim=1) | |
| else: | |
| original_dtype = hidden_states.dtype | |
| mask_float = attention_mask.float().unsqueeze(-1) | |
| pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) | |
| pooled_projections = pooled_projections.to(original_dtype) | |
| temb = self.time_text_embed(timestep, pooled_projections) | |
| hidden_states = self.proj_in(hidden_states) | |
| hidden_states = self.token_refiner(hidden_states, temb, attention_mask) | |
| return hidden_states | |
| class HunyuanVideoRotaryPosEmbed(nn.Module): | |
| def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None: | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.patch_size_t = patch_size_t | |
| self.rope_dim = rope_dim | |
| self.theta = theta | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size] | |
| axes_grids = [] | |
| for i in range(3): | |
| # Note: The following line diverges from original behaviour. We create the grid on the device, whereas | |
| # original implementation creates it on CPU and then moves it to device. This results in numerical | |
| # differences in layerwise debugging outputs, but visually it is the same. | |
| grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32) | |
| axes_grids.append(grid) | |
| grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T] | |
| grid = torch.stack(grid, dim=0) # [3, W, H, T] | |
| freqs = [] | |
| for i in range(3): | |
| freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True) | |
| freqs.append(freq) | |
| freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2) | |
| freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2) | |
| return freqs_cos, freqs_sin | |
| class HunyuanVideoSingleTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| mlp_ratio: float = 4.0, | |
| qk_norm: str = "rms_norm", | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| mlp_dim = int(hidden_size * mlp_ratio) | |
| self.attn = Attention( | |
| query_dim=hidden_size, | |
| cross_attention_dim=None, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=hidden_size, | |
| bias=True, | |
| processor=HunyuanVideoAttnProcessor2_0(), | |
| qk_norm=qk_norm, | |
| eps=1e-6, | |
| pre_only=True, | |
| ) | |
| self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") | |
| self.proj_mlp = nn.Linear(hidden_size, mlp_dim) | |
| self.act_mlp = nn.GELU(approximate="tanh") | |
| self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| text_seq_length = encoder_hidden_states.shape[1] | |
| hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
| residual = hidden_states | |
| # 1. Input normalization | |
| norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
| mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
| norm_hidden_states, norm_encoder_hidden_states = ( | |
| norm_hidden_states[:, :-text_seq_length, :], | |
| norm_hidden_states[:, -text_seq_length:, :], | |
| ) | |
| # 2. Attention | |
| attn_output, context_attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
| # 3. Modulation and residual connection | |
| hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
| hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) | |
| hidden_states = hidden_states + residual | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, :-text_seq_length, :], | |
| hidden_states[:, -text_seq_length:, :], | |
| ) | |
| return hidden_states, encoder_hidden_states | |
| class HunyuanVideoTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| mlp_ratio: float, | |
| qk_norm: str = "rms_norm", | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
| self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
| self.attn = Attention( | |
| query_dim=hidden_size, | |
| cross_attention_dim=None, | |
| added_kv_proj_dim=hidden_size, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=hidden_size, | |
| context_pre_only=False, | |
| bias=True, | |
| processor=HunyuanVideoAttnProcessor2_0(), | |
| qk_norm=qk_norm, | |
| eps=1e-6, | |
| ) | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
| self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # 1. Input normalization | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
| norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
| encoder_hidden_states, emb=temb | |
| ) | |
| # 2. Joint attention | |
| attn_output, context_attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=freqs_cis, | |
| ) | |
| # 3. Modulation and residual connection | |
| hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) | |
| encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
| # 4. Feed-forward | |
| ff_output = self.ff(norm_hidden_states) | |
| context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
| hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output | |
| encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
| return hidden_states, encoder_hidden_states | |
| class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| mlp_ratio: float = 4.0, | |
| qk_norm: str = "rms_norm", | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| mlp_dim = int(hidden_size * mlp_ratio) | |
| self.attn = Attention( | |
| query_dim=hidden_size, | |
| cross_attention_dim=None, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=hidden_size, | |
| bias=True, | |
| processor=HunyuanVideoAttnProcessor2_0(), | |
| qk_norm=qk_norm, | |
| eps=1e-6, | |
| pre_only=True, | |
| ) | |
| self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") | |
| self.proj_mlp = nn.Linear(hidden_size, mlp_dim) | |
| self.act_mlp = nn.GELU(approximate="tanh") | |
| self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| token_replace_emb: torch.Tensor = None, | |
| num_tokens: int = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| text_seq_length = encoder_hidden_states.shape[1] | |
| hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
| residual = hidden_states | |
| # 1. Input normalization | |
| norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens) | |
| mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
| norm_hidden_states, norm_encoder_hidden_states = ( | |
| norm_hidden_states[:, :-text_seq_length, :], | |
| norm_hidden_states[:, -text_seq_length:, :], | |
| ) | |
| # 2. Attention | |
| attn_output, context_attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
| # 3. Modulation and residual connection | |
| hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
| proj_output = self.proj_out(hidden_states) | |
| hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1) | |
| hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1) | |
| hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| hidden_states = hidden_states + residual | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, :-text_seq_length, :], | |
| hidden_states[:, -text_seq_length:, :], | |
| ) | |
| return hidden_states, encoder_hidden_states | |
| class HunyuanVideoTokenReplaceTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| mlp_ratio: float, | |
| qk_norm: str = "rms_norm", | |
| ) -> None: | |
| super().__init__() | |
| hidden_size = num_attention_heads * attention_head_dim | |
| self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
| self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
| self.attn = Attention( | |
| query_dim=hidden_size, | |
| cross_attention_dim=None, | |
| added_kv_proj_dim=hidden_size, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=hidden_size, | |
| context_pre_only=False, | |
| bias=True, | |
| processor=HunyuanVideoAttnProcessor2_0(), | |
| qk_norm=qk_norm, | |
| eps=1e-6, | |
| ) | |
| self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
| self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| token_replace_emb: torch.Tensor = None, | |
| num_tokens: int = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # 1. Input normalization | |
| ( | |
| norm_hidden_states, | |
| gate_msa, | |
| shift_mlp, | |
| scale_mlp, | |
| gate_mlp, | |
| tr_gate_msa, | |
| tr_shift_mlp, | |
| tr_scale_mlp, | |
| tr_gate_mlp, | |
| ) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens) | |
| norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
| encoder_hidden_states, emb=temb | |
| ) | |
| # 2. Joint attention | |
| attn_output, context_attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=freqs_cis, | |
| ) | |
| # 3. Modulation and residual connection | |
| hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1) | |
| hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1) | |
| hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
| hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None] | |
| hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
| # 4. Feed-forward | |
| ff_output = self.ff(norm_hidden_states) | |
| context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
| hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1) | |
| hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1) | |
| hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) | |
| encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
| return hidden_states, encoder_hidden_states | |
| class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| r""" | |
| A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo). | |
| Args: | |
| in_channels (`int`, defaults to `16`): | |
| The number of channels in the input. | |
| out_channels (`int`, defaults to `16`): | |
| The number of channels in the output. | |
| num_attention_heads (`int`, defaults to `24`): | |
| The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, defaults to `128`): | |
| The number of channels in each head. | |
| num_layers (`int`, defaults to `20`): | |
| The number of layers of dual-stream blocks to use. | |
| num_single_layers (`int`, defaults to `40`): | |
| The number of layers of single-stream blocks to use. | |
| num_refiner_layers (`int`, defaults to `2`): | |
| The number of layers of refiner blocks to use. | |
| mlp_ratio (`float`, defaults to `4.0`): | |
| The ratio of the hidden layer size to the input size in the feedforward network. | |
| patch_size (`int`, defaults to `2`): | |
| The size of the spatial patches to use in the patch embedding layer. | |
| patch_size_t (`int`, defaults to `1`): | |
| The size of the tmeporal patches to use in the patch embedding layer. | |
| qk_norm (`str`, defaults to `rms_norm`): | |
| The normalization to use for the query and key projections in the attention layers. | |
| guidance_embeds (`bool`, defaults to `True`): | |
| Whether to use guidance embeddings in the model. | |
| text_embed_dim (`int`, defaults to `4096`): | |
| Input dimension of text embeddings from the text encoder. | |
| pooled_projection_dim (`int`, defaults to `768`): | |
| The dimension of the pooled projection of the text embeddings. | |
| rope_theta (`float`, defaults to `256.0`): | |
| The value of theta to use in the RoPE layer. | |
| rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`): | |
| The dimensions of the axes to use in the RoPE layer. | |
| image_condition_type (`str`, *optional*, defaults to `None`): | |
| The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the | |
| image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame | |
| tokens in the latent stream and apply conditioning. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _skip_layerwise_casting_patterns = ["x_embedder", "context_embedder", "norm"] | |
| _no_split_modules = [ | |
| "HunyuanVideoTransformerBlock", | |
| "HunyuanVideoSingleTransformerBlock", | |
| "HunyuanVideoPatchEmbed", | |
| "HunyuanVideoTokenRefiner", | |
| ] | |
| _repeated_blocks = [ | |
| "HunyuanVideoTransformerBlock", | |
| "HunyuanVideoSingleTransformerBlock", | |
| "HunyuanVideoPatchEmbed", | |
| "HunyuanVideoTokenRefiner", | |
| ] | |
| def __init__( | |
| self, | |
| in_channels: int = 16, | |
| out_channels: int = 16, | |
| num_attention_heads: int = 24, | |
| attention_head_dim: int = 128, | |
| num_layers: int = 20, | |
| num_single_layers: int = 40, | |
| num_refiner_layers: int = 2, | |
| mlp_ratio: float = 4.0, | |
| patch_size: int = 2, | |
| patch_size_t: int = 1, | |
| qk_norm: str = "rms_norm", | |
| guidance_embeds: bool = True, | |
| text_embed_dim: int = 4096, | |
| pooled_projection_dim: int = 768, | |
| rope_theta: float = 256.0, | |
| rope_axes_dim: Tuple[int, ...] = (16, 56, 56), | |
| image_condition_type: Optional[str] = None, | |
| ) -> None: | |
| super().__init__() | |
| supported_image_condition_types = ["latent_concat", "token_replace"] | |
| if image_condition_type is not None and image_condition_type not in supported_image_condition_types: | |
| raise ValueError( | |
| f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}" | |
| ) | |
| inner_dim = num_attention_heads * attention_head_dim | |
| out_channels = out_channels or in_channels | |
| # 1. Latent and condition embedders | |
| self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) | |
| self.context_embedder = HunyuanVideoTokenRefiner( | |
| text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers | |
| ) | |
| self.time_text_embed = HunyuanVideoConditionEmbedding( | |
| inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type | |
| ) | |
| # 2. RoPE | |
| self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta) | |
| # 3. Dual stream transformer blocks | |
| if image_condition_type == "token_replace": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| HunyuanVideoTokenReplaceTransformerBlock( | |
| num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| else: | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| HunyuanVideoTransformerBlock( | |
| num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| # 4. Single stream transformer blocks | |
| if image_condition_type == "token_replace": | |
| self.single_transformer_blocks = nn.ModuleList( | |
| [ | |
| HunyuanVideoTokenReplaceSingleTransformerBlock( | |
| num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm | |
| ) | |
| for _ in range(num_single_layers) | |
| ] | |
| ) | |
| else: | |
| self.single_transformer_blocks = nn.ModuleList( | |
| [ | |
| HunyuanVideoSingleTransformerBlock( | |
| num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm | |
| ) | |
| for _ in range(num_single_layers) | |
| ] | |
| ) | |
| # 5. Output projection | |
| self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) | |
| self.gradient_checkpointing = False | |
| self.sp_world_size = 1 | |
| self.sp_world_rank = 0 | |
| def _set_gradient_checkpointing(self, *args, **kwargs): | |
| if "value" in kwargs: | |
| self.gradient_checkpointing = kwargs["value"] | |
| elif "enable" in kwargs: | |
| self.gradient_checkpointing = kwargs["enable"] | |
| else: | |
| raise ValueError("Invalid set gradient checkpointing") | |
| def enable_multi_gpus_inference(self,): | |
| self.sp_world_size = get_sequence_parallel_world_size() | |
| self.sp_world_rank = get_sequence_parallel_rank() | |
| self.set_attn_processor(HunyuanVideoMultiGPUsAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor") and module.set_processor is not None: | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.LongTensor, | |
| encoder_hidden_states: torch.Tensor, | |
| encoder_attention_mask: torch.Tensor, | |
| pooled_projections: torch.Tensor, | |
| guidance: torch.Tensor = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]: | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| p, p_t = self.config.patch_size, self.config.patch_size_t | |
| post_patch_num_frames = num_frames // p_t | |
| post_patch_height = height // p | |
| post_patch_width = width // p | |
| first_frame_num_tokens = 1 * post_patch_height * post_patch_width | |
| # 1. RoPE | |
| image_rotary_emb = self.rope(hidden_states) | |
| # 2. Conditional embeddings | |
| temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance) | |
| hidden_states = self.x_embedder(hidden_states) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) | |
| # 3. Attention mask preparation | |
| latent_sequence_length = hidden_states.shape[1] | |
| condition_sequence_length = encoder_hidden_states.shape[1] | |
| sequence_length = latent_sequence_length + condition_sequence_length | |
| attention_mask = torch.ones( | |
| batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool | |
| ) # [B, N] | |
| effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] | |
| effective_sequence_length = latent_sequence_length + effective_condition_sequence_length | |
| indices = torch.arange(sequence_length, device=hidden_states.device).unsqueeze(0) # [1, N] | |
| mask_indices = indices >= effective_sequence_length.unsqueeze(1) # [B, N] | |
| attention_mask = attention_mask.masked_fill(mask_indices, False) | |
| attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # [B, 1, 1, N] | |
| # Context Parallel | |
| if self.sp_world_size > 1: | |
| hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank] | |
| if image_rotary_emb is not None: | |
| image_rotary_emb = ( | |
| torch.chunk(image_rotary_emb[0], self.sp_world_size, dim=0)[self.sp_world_rank], | |
| torch.chunk(image_rotary_emb[1], self.sp_world_size, dim=0)[self.sp_world_rank] | |
| ) | |
| if self.sp_world_rank >=1: | |
| first_frame_num_tokens = 0 | |
| # 4. Transformer blocks | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for block in self.transformer_blocks: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| attention_mask, | |
| image_rotary_emb, | |
| token_replace_emb, | |
| first_frame_num_tokens, | |
| **ckpt_kwargs, | |
| ) | |
| for block in self.single_transformer_blocks: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| attention_mask, | |
| image_rotary_emb, | |
| token_replace_emb, | |
| first_frame_num_tokens, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| for block in self.transformer_blocks: | |
| hidden_states, encoder_hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| attention_mask, | |
| image_rotary_emb, | |
| token_replace_emb, | |
| first_frame_num_tokens, | |
| ) | |
| for block in self.single_transformer_blocks: | |
| hidden_states, encoder_hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| attention_mask, | |
| image_rotary_emb, | |
| token_replace_emb, | |
| first_frame_num_tokens, | |
| ) | |
| # 5. Output projection | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| if self.sp_world_size > 1: | |
| hidden_states = get_sp_group().all_gather(hidden_states, dim=1) | |
| hidden_states = hidden_states.reshape( | |
| batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p | |
| ) | |
| hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) | |
| hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (hidden_states,) | |
| return Transformer2DModelOutput(sample=hidden_states) | |
| def from_pretrained( | |
| cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if "dict_mapping" in transformer_additional_kwargs.keys(): | |
| for key in transformer_additional_kwargs["dict_mapping"]: | |
| transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key] | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers import __version__ as diffusers_version | |
| if diffusers_version >= "0.33.0": | |
| from diffusers.models.model_loading_utils import \ | |
| load_model_dict_into_meta | |
| else: | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| print(model_files_safetensors) | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| filtered_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size(): | |
| filtered_state_dict[key] = state_dict[key] | |
| else: | |
| print(f"Skipping key '{key}' due to size mismatch or absence in model.") | |
| model_keys = set(model.state_dict().keys()) | |
| loaded_keys = set(filtered_state_dict.keys()) | |
| missing_keys = model_keys - loaded_keys | |
| def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None): | |
| initialized_dict = {} | |
| with torch.no_grad(): | |
| for key in missing_keys: | |
| param_shape = model_state_dict[key].shape | |
| param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype | |
| if 'weight' in key: | |
| if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']): | |
| initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) | |
| elif 'embedding' in key or 'embed' in key: | |
| initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 | |
| elif 'head' in key or 'output' in key or 'proj_out' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif len(param_shape) >= 2: | |
| initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype) | |
| nn.init.xavier_uniform_(initialized_dict[key]) | |
| else: | |
| initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 | |
| elif 'bias' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif 'running_mean' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif 'running_var' in key: | |
| initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) | |
| elif 'num_batches_tracked' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long) | |
| else: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| return initialized_dict | |
| if missing_keys: | |
| print(f"Missing keys will be initialized: {sorted(missing_keys)}") | |
| initialized_params = initialize_missing_parameters( | |
| missing_keys, | |
| model.state_dict(), | |
| torch_dtype | |
| ) | |
| filtered_state_dict.update(initialized_params) | |
| if diffusers_version >= "0.33.0": | |
| # Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit: | |
| # https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785. | |
| load_model_dict_into_meta( | |
| model, | |
| filtered_state_dict, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| else: | |
| model._convert_deprecated_attention_blocks(filtered_state_dict) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| filtered_state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m) | |
| params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### All Parameters: {sum(params) / 1e6} M") | |
| params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model |