Alexander Bagus
initial commit
d2c9b66
raw
history blame
18.3 kB
import gc
import inspect
import os
import shutil
import subprocess
import time
import cv2
import imageio
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
def filter_kwargs(cls, kwargs):
sig = inspect.signature(cls.__init__)
valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
return filtered_kwargs
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
target_pixels = int(base_resolution) * int(base_resolution)
original_width, original_height = Image.open(image).size
ratio = (target_pixels / (original_width * original_height)) ** 0.5
width_slider = round(original_width * ratio)
height_slider = round(original_height * ratio)
return height_slider, width_slider
def color_transfer(sc, dc):
"""
Transfer color distribution from of sc, referred to dc.
Args:
sc (numpy.ndarray): input image to be transfered.
dc (numpy.ndarray): reference image
Returns:
numpy.ndarray: Transferred color distribution on the sc.
"""
def get_mean_and_std(img):
x_mean, x_std = cv2.meanStdDev(img)
x_mean = np.hstack(np.around(x_mean, 2))
x_std = np.hstack(np.around(x_std, 2))
return x_mean, x_std
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB)
s_mean, s_std = get_mean_and_std(sc)
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB)
t_mean, t_std = get_mean_and_std(dc)
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean
np.putmask(img_n, img_n > 255, 255)
np.putmask(img_n, img_n < 0, 0)
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB)
return dst
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(Image.fromarray(x))
if color_transfer_post_process:
for i in range(1, len(outputs)):
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0])))
os.makedirs(os.path.dirname(path), exist_ok=True)
if imageio_backend:
if path.endswith("mp4"):
imageio.mimsave(path, outputs, fps=fps)
else:
imageio.mimsave(path, outputs, duration=(1000 * 1/fps))
else:
if path.endswith("mp4"):
path = path.replace('.mp4', '.gif')
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0)
def merge_video_audio(video_path: str, audio_path: str):
"""
Merge the video and audio into a new video, with the duration set to the shorter of the two,
and overwrite the original video file.
Parameters:
video_path (str): Path to the original video file
audio_path (str): Path to the audio file
"""
# check
if not os.path.exists(video_path):
raise FileNotFoundError(f"video file {video_path} does not exist")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"audio file {audio_path} does not exist")
base, ext = os.path.splitext(video_path)
temp_output = f"{base}_temp{ext}"
try:
# create ffmpeg command
command = [
'ffmpeg',
'-y', # overwrite
'-i',
video_path,
'-i',
audio_path,
'-c:v',
'copy', # copy video stream
'-c:a',
'aac', # use AAC audio encoder
'-b:a',
'192k', # set audio bitrate (optional)
'-map',
'0:v:0', # select the first video stream
'-map',
'1:a:0', # select the first audio stream
'-shortest', # choose the shortest duration
temp_output
]
# execute the command
print("Start merging video and audio...")
result = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# check result
if result.returncode != 0:
error_msg = f"FFmpeg execute failed: {result.stderr}"
print(error_msg)
raise RuntimeError(error_msg)
shutil.move(temp_output, video_path)
print(f"Merge completed, saved to {video_path}")
except Exception as e:
if os.path.exists(temp_output):
os.remove(temp_output)
print(f"merge_video_audio failed with error: {e}")
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
if validation_image_start is not None and validation_image_end is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
if type(validation_image_end) is str and os.path.isfile(validation_image_end):
image_end = Image.open(validation_image_end).convert("RGB")
image_end = image_end.resize([sample_size[1], sample_size[0]])
else:
image_end = validation_image_end
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end]
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
)
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:] = 255
if type(image_end) is list:
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end]
end_video = torch.cat(
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end],
dim=2
)
input_video[:, :, -len(end_video):] = end_video
input_video_mask[:, :, -len(image_end):] = 0
else:
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size)
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
input_video_mask[:, :, -1:] = 0
input_video = input_video / 255
elif validation_image_start is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
image_end = None
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video = input_video / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
) / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:, ] = 255
else:
image_start = None
image_end = None
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]])
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255
clip_image = None
del image_start
del image_end
gc.collect()
return input_video, input_video_mask, clip_image
def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None, ref_image=None):
if input_video_path is not None:
if isinstance(input_video_path, str):
cap = cv2.VideoCapture(input_video_path)
input_video = []
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip = 1 if fps is None else max(1,int(original_fps // fps))
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_skip == 0:
frame = cv2.resize(frame, (sample_size[1], sample_size[0]))
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frame_count += 1
cap.release()
else:
input_video = input_video_path
input_video = torch.from_numpy(np.array(input_video))[:video_length]
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
if validation_video_mask is not None:
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0]))
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255)
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
else:
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, :] = 255
else:
input_video, input_video_mask = None, None
if ref_image is not None:
if isinstance(ref_image, str):
clip_image = Image.open(ref_image).convert("RGB")
else:
clip_image = Image.fromarray(np.array(ref_image, np.uint8))
else:
clip_image = None
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
else:
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
return input_video, input_video_mask, ref_image, clip_image
def get_image_latent(ref_image=None, sample_size=None, padding=False):
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
if padding:
ref_image = padding_image(ref_image, sample_size[1], sample_size[0])
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
elif isinstance(ref_image, Image.Image):
ref_image = ref_image.convert("RGB")
if padding:
ref_image = padding_image(ref_image, sample_size[1], sample_size[0])
ref_image = ref_image.resize((sample_size[1], sample_size[0]))
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
else:
ref_image = torch.from_numpy(np.array(ref_image))
ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255
return ref_image
def get_image(ref_image=None):
if ref_image is not None:
if isinstance(ref_image, str):
ref_image = Image.open(ref_image).convert("RGB")
elif isinstance(ref_image, Image.Image):
ref_image = ref_image.convert("RGB")
return ref_image
def padding_image(images, new_width, new_height):
new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255))
aspect_ratio = images.width / images.height
if new_width / new_height > 1:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
else:
if aspect_ratio > new_width / new_height:
new_img_width = new_width
new_img_height = int(new_img_width / aspect_ratio)
else:
new_img_height = new_height
new_img_width = int(new_img_height * aspect_ratio)
resized_img = images.resize((new_img_width, new_img_height))
paste_x = (new_width - new_img_width) // 2
paste_y = (new_height - new_img_height) // 2
new_image.paste(resized_img, (paste_x, paste_y))
return new_image
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"function {func.__name__} running for {end_time - start_time} seconds")
return result
return wrapper
def timer_record(model_name=""):
def decorator(func):
def wrapper(*args, **kwargs):
torch.cuda.synchronize()
start_time = time.time()
result = func(*args, **kwargs)
torch.cuda.synchronize()
end_time = time.time()
import torch.distributed as dist
if dist.is_initialized():
if dist.get_rank() == 0:
time_sum = end_time - start_time
print('# --------------------------------------------------------- #')
print(f'# {model_name} time: {time_sum}s')
print('# --------------------------------------------------------- #')
_write_to_excel(model_name, time_sum)
else:
time_sum = end_time - start_time
print('# --------------------------------------------------------- #')
print(f'# {model_name} time: {time_sum}s')
print('# --------------------------------------------------------- #')
_write_to_excel(model_name, time_sum)
return result
return wrapper
return decorator
def _write_to_excel(model_name, time_sum):
import os
import pandas as pd
row_env = os.environ.get(f"{model_name}_EXCEL_ROW", "1") # 默认第1行
col_env = os.environ.get(f"{model_name}_EXCEL_COL", "1") # 默认第A列
file_path = os.environ.get("EXCEL_FILE", "timing_records.xlsx") # 默认文件名
try:
df = pd.read_excel(file_path, sheet_name="Sheet1", header=None)
except FileNotFoundError:
df = pd.DataFrame()
row_idx = int(row_env)
col_idx = int(col_env)
if row_idx >= len(df):
df = pd.concat([df, pd.DataFrame([ [None] * (len(df.columns) if not df.empty else 0) ] * (row_idx - len(df) + 1))], ignore_index=True)
if col_idx >= len(df.columns):
df = pd.concat([df, pd.DataFrame(columns=range(len(df.columns), col_idx + 1))], axis=1)
df.iloc[row_idx, col_idx] = time_sum
df.to_excel(file_path, index=False, header=False, sheet_name="Sheet1")
def get_autocast_dtype():
try:
if not torch.cuda.is_available():
print("CUDA not available, using float16 by default.")
return torch.float16
device = torch.cuda.current_device()
prop = torch.cuda.get_device_properties(device)
print(f"GPU: {prop.name}, Compute Capability: {prop.major}.{prop.minor}")
if prop.major >= 8:
if torch.cuda.is_bf16_supported():
print("Using bfloat16.")
return torch.bfloat16
else:
print("Compute capability >= 8.0 but bfloat16 not supported, falling back to float16.")
return torch.float16
else:
print("GPU does not support bfloat16 natively, using float16.")
return torch.float16
except Exception as e:
print(f"Error detecting GPU capability: {e}, falling back to float16.")
return torch.float16