Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import inspect | |
| import os | |
| import shutil | |
| import subprocess | |
| import time | |
| import cv2 | |
| import imageio | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from einops import rearrange | |
| from PIL import Image | |
| def filter_kwargs(cls, kwargs): | |
| sig = inspect.signature(cls.__init__) | |
| valid_params = set(sig.parameters.keys()) - {'self', 'cls'} | |
| filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params} | |
| return filtered_kwargs | |
| def get_width_and_height_from_image_and_base_resolution(image, base_resolution): | |
| target_pixels = int(base_resolution) * int(base_resolution) | |
| original_width, original_height = Image.open(image).size | |
| ratio = (target_pixels / (original_width * original_height)) ** 0.5 | |
| width_slider = round(original_width * ratio) | |
| height_slider = round(original_height * ratio) | |
| return height_slider, width_slider | |
| def color_transfer(sc, dc): | |
| """ | |
| Transfer color distribution from of sc, referred to dc. | |
| Args: | |
| sc (numpy.ndarray): input image to be transfered. | |
| dc (numpy.ndarray): reference image | |
| Returns: | |
| numpy.ndarray: Transferred color distribution on the sc. | |
| """ | |
| def get_mean_and_std(img): | |
| x_mean, x_std = cv2.meanStdDev(img) | |
| x_mean = np.hstack(np.around(x_mean, 2)) | |
| x_std = np.hstack(np.around(x_std, 2)) | |
| return x_mean, x_std | |
| sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) | |
| s_mean, s_std = get_mean_and_std(sc) | |
| dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) | |
| t_mean, t_std = get_mean_and_std(dc) | |
| img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean | |
| np.putmask(img_n, img_n > 255, 255) | |
| np.putmask(img_n, img_n < 0, 0) | |
| dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) | |
| return dst | |
| def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): | |
| videos = rearrange(videos, "b c t h w -> t b c h w") | |
| outputs = [] | |
| for x in videos: | |
| x = torchvision.utils.make_grid(x, nrow=n_rows) | |
| x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
| if rescale: | |
| x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
| x = (x * 255).numpy().astype(np.uint8) | |
| outputs.append(Image.fromarray(x)) | |
| if color_transfer_post_process: | |
| for i in range(1, len(outputs)): | |
| outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| if imageio_backend: | |
| if path.endswith("mp4"): | |
| imageio.mimsave(path, outputs, fps=fps) | |
| else: | |
| imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) | |
| else: | |
| if path.endswith("mp4"): | |
| path = path.replace('.mp4', '.gif') | |
| outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) | |
| def merge_video_audio(video_path: str, audio_path: str): | |
| """ | |
| Merge the video and audio into a new video, with the duration set to the shorter of the two, | |
| and overwrite the original video file. | |
| Parameters: | |
| video_path (str): Path to the original video file | |
| audio_path (str): Path to the audio file | |
| """ | |
| # check | |
| if not os.path.exists(video_path): | |
| raise FileNotFoundError(f"video file {video_path} does not exist") | |
| if not os.path.exists(audio_path): | |
| raise FileNotFoundError(f"audio file {audio_path} does not exist") | |
| base, ext = os.path.splitext(video_path) | |
| temp_output = f"{base}_temp{ext}" | |
| try: | |
| # create ffmpeg command | |
| command = [ | |
| 'ffmpeg', | |
| '-y', # overwrite | |
| '-i', | |
| video_path, | |
| '-i', | |
| audio_path, | |
| '-c:v', | |
| 'copy', # copy video stream | |
| '-c:a', | |
| 'aac', # use AAC audio encoder | |
| '-b:a', | |
| '192k', # set audio bitrate (optional) | |
| '-map', | |
| '0:v:0', # select the first video stream | |
| '-map', | |
| '1:a:0', # select the first audio stream | |
| '-shortest', # choose the shortest duration | |
| temp_output | |
| ] | |
| # execute the command | |
| print("Start merging video and audio...") | |
| result = subprocess.run( | |
| command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) | |
| # check result | |
| if result.returncode != 0: | |
| error_msg = f"FFmpeg execute failed: {result.stderr}" | |
| print(error_msg) | |
| raise RuntimeError(error_msg) | |
| shutil.move(temp_output, video_path) | |
| print(f"Merge completed, saved to {video_path}") | |
| except Exception as e: | |
| if os.path.exists(temp_output): | |
| os.remove(temp_output) | |
| print(f"merge_video_audio failed with error: {e}") | |
| def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): | |
| if validation_image_start is not None and validation_image_end is not None: | |
| if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
| image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
| image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
| clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
| else: | |
| image_start = clip_image = validation_image_start | |
| image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
| clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
| if type(validation_image_end) is str and os.path.isfile(validation_image_end): | |
| image_end = Image.open(validation_image_end).convert("RGB") | |
| image_end = image_end.resize([sample_size[1], sample_size[0]]) | |
| else: | |
| image_end = validation_image_end | |
| image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] | |
| if type(image_start) is list: | |
| clip_image = clip_image[0] | |
| start_video = torch.cat( | |
| [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], | |
| dim=2 | |
| ) | |
| input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
| input_video[:, :, :len(image_start)] = start_video | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| input_video_mask[:, :, len(image_start):] = 255 | |
| else: | |
| input_video = torch.tile( | |
| torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
| [1, 1, video_length, 1, 1] | |
| ) | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| input_video_mask[:, :, 1:] = 255 | |
| if type(image_end) is list: | |
| image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end] | |
| end_video = torch.cat( | |
| [torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end], | |
| dim=2 | |
| ) | |
| input_video[:, :, -len(end_video):] = end_video | |
| input_video_mask[:, :, -len(image_end):] = 0 | |
| else: | |
| image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) | |
| input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) | |
| input_video_mask[:, :, -1:] = 0 | |
| input_video = input_video / 255 | |
| elif validation_image_start is not None: | |
| if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
| image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
| image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
| clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
| else: | |
| image_start = clip_image = validation_image_start | |
| image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
| clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
| image_end = None | |
| if type(image_start) is list: | |
| clip_image = clip_image[0] | |
| start_video = torch.cat( | |
| [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], | |
| dim=2 | |
| ) | |
| input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
| input_video[:, :, :len(image_start)] = start_video | |
| input_video = input_video / 255 | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| input_video_mask[:, :, len(image_start):] = 255 | |
| else: | |
| input_video = torch.tile( | |
| torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
| [1, 1, video_length, 1, 1] | |
| ) / 255 | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| input_video_mask[:, :, 1:, ] = 255 | |
| else: | |
| image_start = None | |
| image_end = None | |
| input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) | |
| input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 | |
| clip_image = None | |
| del image_start | |
| del image_end | |
| gc.collect() | |
| return input_video, input_video_mask, clip_image | |
| def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None, ref_image=None): | |
| if input_video_path is not None: | |
| if isinstance(input_video_path, str): | |
| cap = cv2.VideoCapture(input_video_path) | |
| input_video = [] | |
| original_fps = cap.get(cv2.CAP_PROP_FPS) | |
| frame_skip = 1 if fps is None else max(1,int(original_fps // fps)) | |
| frame_count = 0 | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| if frame_count % frame_skip == 0: | |
| frame = cv2.resize(frame, (sample_size[1], sample_size[0])) | |
| input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| frame_count += 1 | |
| cap.release() | |
| else: | |
| input_video = input_video_path | |
| input_video = torch.from_numpy(np.array(input_video))[:video_length] | |
| input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| if validation_video_mask is not None: | |
| validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0])) | |
| input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255) | |
| input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0) | |
| input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1]) | |
| input_video_mask = input_video_mask.to(input_video.device, input_video.dtype) | |
| else: | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| input_video_mask[:, :, :] = 255 | |
| else: | |
| input_video, input_video_mask = None, None | |
| if ref_image is not None: | |
| if isinstance(ref_image, str): | |
| clip_image = Image.open(ref_image).convert("RGB") | |
| else: | |
| clip_image = Image.fromarray(np.array(ref_image, np.uint8)) | |
| else: | |
| clip_image = None | |
| if ref_image is not None: | |
| if isinstance(ref_image, str): | |
| ref_image = Image.open(ref_image).convert("RGB") | |
| ref_image = ref_image.resize((sample_size[1], sample_size[0])) | |
| ref_image = torch.from_numpy(np.array(ref_image)) | |
| ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| else: | |
| ref_image = torch.from_numpy(np.array(ref_image)) | |
| ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| return input_video, input_video_mask, ref_image, clip_image | |
| def get_image_latent(ref_image=None, sample_size=None, padding=False): | |
| if ref_image is not None: | |
| if isinstance(ref_image, str): | |
| ref_image = Image.open(ref_image).convert("RGB") | |
| if padding: | |
| ref_image = padding_image(ref_image, sample_size[1], sample_size[0]) | |
| ref_image = ref_image.resize((sample_size[1], sample_size[0])) | |
| ref_image = torch.from_numpy(np.array(ref_image)) | |
| ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| elif isinstance(ref_image, Image.Image): | |
| ref_image = ref_image.convert("RGB") | |
| if padding: | |
| ref_image = padding_image(ref_image, sample_size[1], sample_size[0]) | |
| ref_image = ref_image.resize((sample_size[1], sample_size[0])) | |
| ref_image = torch.from_numpy(np.array(ref_image)) | |
| ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| else: | |
| ref_image = torch.from_numpy(np.array(ref_image)) | |
| ref_image = ref_image.unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0) / 255 | |
| return ref_image | |
| def get_image(ref_image=None): | |
| if ref_image is not None: | |
| if isinstance(ref_image, str): | |
| ref_image = Image.open(ref_image).convert("RGB") | |
| elif isinstance(ref_image, Image.Image): | |
| ref_image = ref_image.convert("RGB") | |
| return ref_image | |
| def padding_image(images, new_width, new_height): | |
| new_image = Image.new('RGB', (new_width, new_height), (255, 255, 255)) | |
| aspect_ratio = images.width / images.height | |
| if new_width / new_height > 1: | |
| if aspect_ratio > new_width / new_height: | |
| new_img_width = new_width | |
| new_img_height = int(new_img_width / aspect_ratio) | |
| else: | |
| new_img_height = new_height | |
| new_img_width = int(new_img_height * aspect_ratio) | |
| else: | |
| if aspect_ratio > new_width / new_height: | |
| new_img_width = new_width | |
| new_img_height = int(new_img_width / aspect_ratio) | |
| else: | |
| new_img_height = new_height | |
| new_img_width = int(new_img_height * aspect_ratio) | |
| resized_img = images.resize((new_img_width, new_img_height)) | |
| paste_x = (new_width - new_img_width) // 2 | |
| paste_y = (new_height - new_img_height) // 2 | |
| new_image.paste(resized_img, (paste_x, paste_y)) | |
| return new_image | |
| def timer(func): | |
| def wrapper(*args, **kwargs): | |
| start_time = time.time() | |
| result = func(*args, **kwargs) | |
| end_time = time.time() | |
| print(f"function {func.__name__} running for {end_time - start_time} seconds") | |
| return result | |
| return wrapper | |
| def timer_record(model_name=""): | |
| def decorator(func): | |
| def wrapper(*args, **kwargs): | |
| torch.cuda.synchronize() | |
| start_time = time.time() | |
| result = func(*args, **kwargs) | |
| torch.cuda.synchronize() | |
| end_time = time.time() | |
| import torch.distributed as dist | |
| if dist.is_initialized(): | |
| if dist.get_rank() == 0: | |
| time_sum = end_time - start_time | |
| print('# --------------------------------------------------------- #') | |
| print(f'# {model_name} time: {time_sum}s') | |
| print('# --------------------------------------------------------- #') | |
| _write_to_excel(model_name, time_sum) | |
| else: | |
| time_sum = end_time - start_time | |
| print('# --------------------------------------------------------- #') | |
| print(f'# {model_name} time: {time_sum}s') | |
| print('# --------------------------------------------------------- #') | |
| _write_to_excel(model_name, time_sum) | |
| return result | |
| return wrapper | |
| return decorator | |
| def _write_to_excel(model_name, time_sum): | |
| import os | |
| import pandas as pd | |
| row_env = os.environ.get(f"{model_name}_EXCEL_ROW", "1") # 默认第1行 | |
| col_env = os.environ.get(f"{model_name}_EXCEL_COL", "1") # 默认第A列 | |
| file_path = os.environ.get("EXCEL_FILE", "timing_records.xlsx") # 默认文件名 | |
| try: | |
| df = pd.read_excel(file_path, sheet_name="Sheet1", header=None) | |
| except FileNotFoundError: | |
| df = pd.DataFrame() | |
| row_idx = int(row_env) | |
| col_idx = int(col_env) | |
| if row_idx >= len(df): | |
| df = pd.concat([df, pd.DataFrame([ [None] * (len(df.columns) if not df.empty else 0) ] * (row_idx - len(df) + 1))], ignore_index=True) | |
| if col_idx >= len(df.columns): | |
| df = pd.concat([df, pd.DataFrame(columns=range(len(df.columns), col_idx + 1))], axis=1) | |
| df.iloc[row_idx, col_idx] = time_sum | |
| df.to_excel(file_path, index=False, header=False, sheet_name="Sheet1") | |
| def get_autocast_dtype(): | |
| try: | |
| if not torch.cuda.is_available(): | |
| print("CUDA not available, using float16 by default.") | |
| return torch.float16 | |
| device = torch.cuda.current_device() | |
| prop = torch.cuda.get_device_properties(device) | |
| print(f"GPU: {prop.name}, Compute Capability: {prop.major}.{prop.minor}") | |
| if prop.major >= 8: | |
| if torch.cuda.is_bf16_supported(): | |
| print("Using bfloat16.") | |
| return torch.bfloat16 | |
| else: | |
| print("Compute capability >= 8.0 but bfloat16 not supported, falling back to float16.") | |
| return torch.float16 | |
| else: | |
| print("GPU does not support bfloat16 natively, using float16.") | |
| return torch.float16 | |
| except Exception as e: | |
| print(f"Error detecting GPU capability: {e}, falling back to float16.") | |
| return torch.float16 |