ZIT-Controlnet / videox_fun /pipeline /pipeline_flux2_control.py
Alexander Bagus
initial commit
d2c9b66
raw
history blame
43.6 kB
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/flux2/pipeline_flux2.py
# Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from diffusers.utils import (BaseOutput, is_torch_xla_available, logging,
replace_example_docstring)
from diffusers.image_processor import VaeImageProcessor
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.nn.functional as F
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (is_torch_xla_available, logging,
replace_example_docstring)
from diffusers.utils.torch_utils import randn_tensor
from ..models import (AutoencoderKLFlux2, Flux2ImageProcessor,
Flux2ControlTransformer2DModel, Mistral3ForConditionalGeneration, AutoProcessor)
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import Flux2Pipeline
>>> pipe = Flux2Pipeline.from_pretrained("black-forest-labs/FLUX.2-dev", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=50, guidance_scale=2.5).images[0]
>>> image.save("flux.png")
```
"""
def format_text_input(prompts: List[str], system_message: str = None):
# Remove [IMG] tokens from prompts to avoid Pixtral validation issues
# when truncation is enabled. The processor counts [IMG] tokens and fails
# if the count changes after truncation.
cleaned_txt = [prompt.replace("[IMG]", "") for prompt in prompts]
return [
[
{
"role": "system",
"content": [{"type": "text", "text": system_message}],
},
{"role": "user", "content": [{"type": "text", "text": prompt}]},
]
for prompt in cleaned_txt
]
def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float:
a1, b1 = 8.73809524e-05, 1.89833333
a2, b2 = 0.00016927, 0.45666666
if image_seq_len > 4300:
mu = a2 * image_seq_len + b2
return float(mu)
m_200 = a2 * image_seq_len + b2
m_10 = a1 * image_seq_len + b1
a = (m_200 - m_10) / 190.0
b = m_200 - 200.0 * a
mu = a * num_steps + b
return float(mu)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
@dataclass
class Flux2PipelineOutput(BaseOutput):
"""
Output class for Flux2 image generation pipelines.
Args:
images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion
pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be
passed to the decoder.
"""
images: Union[List[PIL.Image.Image], np.ndarray]
class Flux2ControlPipeline(DiffusionPipeline):
r"""
The Flux2 pipeline for text-to-image generation.
Reference: [https://bfl.ai/blog/flux-2](https://bfl.ai/blog/flux-2)
Args:
transformer ([`Flux2ControlTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLFlux2`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`Mistral3ForConditionalGeneration`]):
[Mistral3ForConditionalGeneration](https://huggingface.co/docs/transformers/en/model_doc/mistral3#transformers.Mistral3ForConditionalGeneration)
tokenizer (`AutoProcessor`):
Tokenizer of class
[PixtralProcessor](https://huggingface.co/docs/transformers/en/model_doc/pixtral#transformers.PixtralProcessor).
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKLFlux2,
text_encoder: Mistral3ForConditionalGeneration,
tokenizer: AutoProcessor,
transformer: Flux2ControlTransformer2DModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = Flux2ImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.diffusers_image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.tokenizer_max_length = 512
self.default_sample_size = 128
# fmt: off
self.system_message = "You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object attribution and actions without speculation."
# fmt: on
@staticmethod
def _get_mistral_3_small_prompt_embeds(
text_encoder: Mistral3ForConditionalGeneration,
tokenizer: AutoProcessor,
prompt: Union[str, List[str]],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
max_sequence_length: int = 512,
# fmt: off
system_message: str = "You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object attribution and actions without speculation.",
# fmt: on
hidden_states_layers: List[int] = (10, 20, 30),
):
dtype = text_encoder.dtype if dtype is None else dtype
device = text_encoder.device if device is None else device
prompt = [prompt] if isinstance(prompt, str) else prompt
# Format input messages
messages_batch = format_text_input(prompts=prompt, system_message=system_message)
# Process all messages at once
inputs = tokenizer.apply_chat_template(
messages_batch,
add_generation_prompt=False,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_sequence_length,
)
# Move to device
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs["attention_mask"].to(device)
# Forward pass through the model
output = text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
)
# Only use outputs from intermediate layers and stack them
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
out = out.to(dtype=dtype, device=device)
batch_size, num_channels, seq_len, hidden_dim = out.shape
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
return prompt_embeds
@staticmethod
def _prepare_text_ids(
x: torch.Tensor, # (B, L, D) or (L, D)
t_coord: Optional[torch.Tensor] = None,
):
B, L, _ = x.shape
out_ids = []
for i in range(B):
t = torch.arange(1) if t_coord is None else t_coord[i]
h = torch.arange(1)
w = torch.arange(1)
l = torch.arange(L)
coords = torch.cartesian_prod(t, h, w, l)
out_ids.append(coords)
return torch.stack(out_ids)
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 512,
text_encoder_out_layers: Tuple[int] = (10, 20, 30),
):
device = device or self._execution_device
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
prompt_embeds = self._get_mistral_3_small_prompt_embeds(
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
prompt=prompt,
device=device,
max_sequence_length=max_sequence_length,
system_message=self.system_message,
hidden_states_layers=text_encoder_out_layers,
)
batch_size, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
text_ids = self._prepare_text_ids(prompt_embeds)
text_ids = text_ids.to(device)
return prompt_embeds, text_ids
@staticmethod
def _prepare_latent_ids(
latents: torch.Tensor, # (B, C, H, W)
):
r"""
Generates 4D position coordinates (T, H, W, L) for latent tensors.
Args:
latents (torch.Tensor):
Latent tensor of shape (B, C, H, W)
Returns:
torch.Tensor:
Position IDs tensor of shape (B, H*W, 4) All batches share the same coordinate structure: T=0,
H=[0..H-1], W=[0..W-1], L=0
"""
batch_size, _, height, width = latents.shape
t = torch.arange(1) # [0] - time dimension
h = torch.arange(height)
w = torch.arange(width)
l = torch.arange(1) # [0] - layer dimension
# Create position IDs: (H*W, 4)
latent_ids = torch.cartesian_prod(t, h, w, l)
# Expand to batch: (B, H*W, 4)
latent_ids = latent_ids.unsqueeze(0).expand(batch_size, -1, -1)
return latent_ids
@staticmethod
def _prepare_image_ids(
image_latents: List[torch.Tensor], # [(1, C, H, W), (1, C, H, W), ...]
scale: int = 10,
):
r"""
Generates 4D time-space coordinates (T, H, W, L) for a sequence of image latents.
This function creates a unique coordinate for every pixel/patch across all input latent with different
dimensions.
Args:
image_latents (List[torch.Tensor]):
A list of image latent feature tensors, typically of shape (C, H, W).
scale (int, optional):
A factor used to define the time separation (T-coordinate) between latents. T-coordinate for the i-th
latent is: 'scale + scale * i'. Defaults to 10.
Returns:
torch.Tensor:
The combined coordinate tensor. Shape: (1, N_total, 4) Where N_total is the sum of (H * W) for all
input latents.
Coordinate Components (Dimension 4):
- T (Time): The unique index indicating which latent image the coordinate belongs to.
- H (Height): The row index within that latent image.
- W (Width): The column index within that latent image.
- L (Seq. Length): A sequence length dimension, which is always fixed at 0 (size 1)
"""
if not isinstance(image_latents, list):
raise ValueError(f"Expected `image_latents` to be a list, got {type(image_latents)}.")
# create time offset for each reference image
t_coords = [scale + scale * t for t in torch.arange(0, len(image_latents))]
t_coords = [t.view(-1) for t in t_coords]
image_latent_ids = []
for x, t in zip(image_latents, t_coords):
x = x.squeeze(0)
_, height, width = x.shape
x_ids = torch.cartesian_prod(t, torch.arange(height), torch.arange(width), torch.arange(1))
image_latent_ids.append(x_ids)
image_latent_ids = torch.cat(image_latent_ids, dim=0)
image_latent_ids = image_latent_ids.unsqueeze(0)
return image_latent_ids
@staticmethod
def _patchify_latents(latents):
batch_size, num_channels_latents, height, width = latents.shape
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 1, 3, 5, 2, 4)
latents = latents.reshape(batch_size, num_channels_latents * 4, height // 2, width // 2)
return latents
@staticmethod
def _unpatchify_latents(latents):
batch_size, num_channels_latents, height, width = latents.shape
latents = latents.reshape(batch_size, num_channels_latents // (2 * 2), 2, 2, height, width)
latents = latents.permute(0, 1, 4, 2, 5, 3)
latents = latents.reshape(batch_size, num_channels_latents // (2 * 2), height * 2, width * 2)
return latents
@staticmethod
def _pack_latents(latents):
"""
pack latents: (batch_size, num_channels, height, width) -> (batch_size, height * width, num_channels)
"""
batch_size, num_channels, height, width = latents.shape
latents = latents.reshape(batch_size, num_channels, height * width).permute(0, 2, 1)
return latents
@staticmethod
def _unpack_latents_with_ids(x: torch.Tensor, x_ids: torch.Tensor) -> list[torch.Tensor]:
"""
using position ids to scatter tokens into place
"""
x_list = []
for data, pos in zip(x, x_ids):
_, ch = data.shape # noqa: F841
h_ids = pos[:, 1].to(torch.int64)
w_ids = pos[:, 2].to(torch.int64)
h = torch.max(h_ids) + 1
w = torch.max(w_ids) + 1
flat_ids = h_ids * w + w_ids
out = torch.zeros((h * w, ch), device=data.device, dtype=data.dtype)
out.scatter_(0, flat_ids.unsqueeze(1).expand(-1, ch), data)
# reshape from (H * W, C) to (H, W, C) and permute to (C, H, W)
out = out.view(h, w, ch).permute(2, 0, 1)
x_list.append(out)
return torch.stack(x_list, dim=0)
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if image.ndim != 4:
raise ValueError(f"Expected image dims 4, got {image.ndim}.")
image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
image_latents = self._patchify_latents(image_latents)
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(image_latents.device, image_latents.dtype)
latents_bn_std = torch.sqrt(self.vae.bn.running_var.view(1, -1, 1, 1) + self.vae.config.batch_norm_eps)
image_latents = (image_latents - latents_bn_mean) / latents_bn_std
return image_latents
def prepare_latents(
self,
batch_size,
num_latents_channels,
height,
width,
dtype,
device,
generator: torch.Generator,
latents: Optional[torch.Tensor] = None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_latents_channels * 4, height // 2, width // 2)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
latent_ids = self._prepare_latent_ids(latents)
latent_ids = latent_ids.to(device)
latents = self._pack_latents(latents) # [B, C, H, W] -> [B, H*W, C]
return latents, latent_ids
def prepare_image_latents(
self,
images: List[torch.Tensor],
batch_size,
generator: torch.Generator,
device,
dtype,
):
image_latents = []
for image in images:
image = image.to(device=device, dtype=dtype)
imagge_latent = self._encode_vae_image(image=image, generator=generator)
image_latents.append(imagge_latent) # (1, 128, 32, 32)
image_latent_ids = self._prepare_image_ids(image_latents)
# Pack each latent and concatenate
packed_latents = []
for latent in image_latents:
# latent: (1, 128, 32, 32)
packed = self._pack_latents(latent) # (1, 1024, 128)
packed = packed.squeeze(0) # (1024, 128) - remove batch dim
packed_latents.append(packed)
# Concatenate all reference tokens along sequence dimension
image_latents = torch.cat(packed_latents, dim=0) # (N*1024, 128)
image_latents = image_latents.unsqueeze(0) # (1, N*1024, 128)
image_latents = image_latents.repeat(batch_size, 1, 1)
image_latent_ids = image_latent_ids.repeat(batch_size, 1, 1)
image_latent_ids = image_latent_ids.to(device)
return image_latents, image_latent_ids
def check_inputs(
self,
prompt,
height,
width,
prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if (
height is not None
and height % (self.vae_scale_factor * 2) != 0
or width is not None
and width % (self.vae_scale_factor * 2) != 0
):
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@property
def guidance_scale(self):
return self._guidance_scale
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
inpaint_image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
mask_image: Union[torch.FloatTensor] = None,
control_image: Union[torch.FloatTensor] = None,
control_context_scale: float = 1.0,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: Optional[float] = 4.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
text_encoder_out_layers: Tuple[int] = (10, 20, 30),
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
guidance_scale (`float`, *optional*, defaults to 1.0):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
text_encoder_out_layers (`Tuple[int]`):
Layer indices to use in the `text_encoder` to derive the final prompt embeddings.
Examples:
Returns:
[`~pipelines.flux2.Flux2PipelineOutput`] or `tuple`: [`~pipelines.flux2.Flux2PipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated images.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt=prompt,
height=height,
width=width,
prompt_embeds=prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
weight_dtype = self.text_encoder.dtype
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(device, weight_dtype)
latents_bn_std = torch.sqrt(self.vae.bn.running_var.view(1, -1, 1, 1) + self.vae.config.batch_norm_eps).to(
device, weight_dtype
)
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
num_channels_latents = self.transformer.config.in_channels // 4
# Prepare mask latent variables
if mask_image is not None:
mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width)
mask_condition = torch.tile(mask_condition, [1, 3, 1, 1]).to(dtype=weight_dtype, device=device)
if inpaint_image is not None:
init_image = self.diffusers_image_processor.preprocess(inpaint_image, height=height, width=width)
init_image = init_image.to(dtype=weight_dtype, device=device) * (mask_condition < 0.5)
inpaint_latent = self.vae.encode(init_image)[0].mode()
else:
inpaint_latent = torch.zeros((batch_size, num_channels_latents * 4, height // 2 // self.vae_scale_factor, width // 2 // self.vae_scale_factor)).to(device, weight_dtype)
if control_image is not None:
control_image = self.diffusers_image_processor.preprocess(control_image, height=height, width=width)
control_image = control_image.to(dtype=weight_dtype, device=device)
control_latents = self.vae.encode(control_image)[0].mode()
else:
control_latents = torch.zeros_like(inpaint_latent)
mask_condition = F.interpolate(1 - mask_condition[:, :1], size=control_latents.size()[-2:], mode='nearest').to(device, weight_dtype)
mask_condition = self._patchify_latents(mask_condition)
mask_condition = self._pack_latents(mask_condition)
if inpaint_image is not None:
inpaint_latent = self._patchify_latents(inpaint_latent)
inpaint_latent = (inpaint_latent - latents_bn_mean) / latents_bn_std
inpaint_latent = self._pack_latents(inpaint_latent)
else:
inpaint_latent = self._patchify_latents(inpaint_latent)
inpaint_latent = self._pack_latents(inpaint_latent)
if control_image is not None:
control_latents = self._patchify_latents(control_latents)
control_latents = (control_latents - latents_bn_mean) / latents_bn_std
control_latents = self._pack_latents(control_latents)
else:
control_latents = self._patchify_latents(control_latents)
control_latents = self._pack_latents(control_latents)
control_context = torch.concat([control_latents, mask_condition, inpaint_latent], dim=2)
# 3. prepare text embeddings
prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
text_encoder_out_layers=text_encoder_out_layers,
)
# 4. process images
if image is not None and not isinstance(image, list):
image = [image]
condition_images = None
if image is not None:
for img in image:
self.image_processor.check_image_input(img)
condition_images = []
for img in image:
image_width, image_height = img.size
if image_width * image_height > 1024 * 1024:
img = self.image_processor._resize_to_target_area(img, 1024 * 1024)
image_width, image_height = img.size
multiple_of = self.vae_scale_factor * 2
image_width = (image_width // multiple_of) * multiple_of
image_height = (image_height // multiple_of) * multiple_of
img = self.image_processor.preprocess(img, height=image_height, width=image_width, resize_mode="crop")
condition_images.append(img)
height = height or image_height
width = width or image_width
# 5. prepare latent variables
latents, latent_ids = self.prepare_latents(
batch_size=batch_size * num_images_per_prompt,
num_latents_channels=num_channels_latents,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=latents,
)
image_latents = None
image_latent_ids = None
if condition_images is not None:
image_latents, image_latent_ids = self.prepare_image_latents(
images=condition_images,
batch_size=batch_size * num_images_per_prompt,
generator=generator,
device=device,
dtype=self.vae.dtype,
)
# 6. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
if hasattr(self.scheduler.config, "use_flow_sigmas") and self.scheduler.config.use_flow_sigmas:
sigmas = None
image_seq_len = latents.shape[1]
mu = compute_empirical_mu(image_seq_len=image_seq_len, num_steps=num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
# 7. Denoising loop
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
self.scheduler.set_begin_index(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
latent_model_input = latents.to(self.transformer.dtype)
control_context_input = control_context.to(self.transformer.dtype)
latent_image_ids = latent_ids
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1).to(self.transformer.dtype)
latent_image_ids = torch.cat([latent_ids, image_latent_ids], dim=1)
local_bs, local_length, local_c = control_context.size()
control_context_input = torch.cat(
[
control_context,
torch.zeros(
[
local_bs,
image_latents.size()[1],
local_c
]
).to(control_context.device, control_context.dtype)],
dim=1
).to(self.transformer.dtype)
noise_pred = self.transformer(
hidden_states=latent_model_input, # (B, image_seq_len, C)
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids, # B, text_seq_len, 4
img_ids=latent_image_ids, # B, image_seq_len, 4
joint_attention_kwargs=self._attention_kwargs,
control_context=control_context_input,
control_context_scale=control_context_scale,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1) :]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents_with_ids(latents, latent_ids)
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
latents_bn_std = torch.sqrt(self.vae.bn.running_var.view(1, -1, 1, 1) + self.vae.config.batch_norm_eps).to(
latents.device, latents.dtype
)
latents = latents * latents_bn_std + latents_bn_mean
latents = self._unpatchify_latents(latents)
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return Flux2PipelineOutput(images=image)