Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import numpy as np | |
| import PIL | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import FromSingleFileMixin | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import (BaseOutput, is_torch_xla_available, logging, | |
| replace_example_docstring) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import AutoTokenizer, PreTrainedModel | |
| from ..models import AutoencoderKL, ZImageTransformer2DModel | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import ZImagePipeline | |
| >>> pipe = ZImagePipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16) | |
| >>> pipe.to("cuda") | |
| >>> # Optionally, set the attention backend to flash-attn 2 or 3, default is SDPA in PyTorch. | |
| >>> # (1) Use flash attention 2 | |
| >>> # pipe.transformer.set_attention_backend("flash") | |
| >>> # (2) Use flash attention 3 | |
| >>> # pipe.transformer.set_attention_backend("_flash_3") | |
| >>> prompt = "一幅为名为“造相「Z-IMAGE-TURBO」”的项目设计的创意海报。画面巧妙地将文字概念视觉化:一辆复古蒸汽小火车化身为巨大的拉链头,正拉开厚厚的冬日积雪,展露出一个生机盎然的春天。" | |
| >>> image = pipe( | |
| diffusers. prompt, | |
| diffusers. height=1024, | |
| diffusers. width=1024, | |
| diffusers. num_inference_steps=9, | |
| diffusers. guidance_scale=0.0, | |
| diffusers. generator=torch.Generator("cuda").manual_seed(42), | |
| diffusers. ).images[0] | |
| >>> image.save("zimage.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class ZImagePipelineOutput(BaseOutput): | |
| """ | |
| Output class for Z-Image image generation pipelines. | |
| Args: | |
| images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`) | |
| List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, | |
| height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion | |
| pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be | |
| passed to the decoder. | |
| """ | |
| images: Union[List[PIL.Image.Image], np.ndarray] | |
| class ZImagePipeline(DiffusionPipeline, FromSingleFileMixin): | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: PreTrainedModel, | |
| tokenizer: AutoTokenizer, | |
| transformer: ZImageTransformer2DModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| transformer=transformer, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| prompt_embeds: Optional[List[torch.FloatTensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| ): | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| if do_classifier_free_guidance: | |
| if negative_prompt is None: | |
| negative_prompt = ["" for _ in prompt] | |
| else: | |
| negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| assert len(prompt) == len(negative_prompt) | |
| negative_prompt_embeds = self._encode_prompt( | |
| prompt=negative_prompt, | |
| device=device, | |
| prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| else: | |
| negative_prompt_embeds = [] | |
| return prompt_embeds, negative_prompt_embeds | |
| def _encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[List[torch.FloatTensor]] = None, | |
| max_sequence_length: int = 512, | |
| ) -> List[torch.FloatTensor]: | |
| device = device or self._execution_device | |
| if prompt_embeds is not None: | |
| return prompt_embeds | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| for i, prompt_item in enumerate(prompt): | |
| messages = [ | |
| {"role": "user", "content": prompt_item}, | |
| ] | |
| prompt_item = self.tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True, | |
| enable_thinking=True, | |
| ) | |
| prompt[i] = prompt_item | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(device) | |
| prompt_masks = text_inputs.attention_mask.to(device).bool() | |
| prompt_embeds = self.text_encoder( | |
| input_ids=text_input_ids, | |
| attention_mask=prompt_masks, | |
| output_hidden_states=True, | |
| ).hidden_states[-2] | |
| embeddings_list = [] | |
| for i in range(len(prompt_embeds)): | |
| embeddings_list.append(prompt_embeds[i][prompt_masks[i]]) | |
| return embeddings_list | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 5.0, | |
| cfg_normalization: bool = False, | |
| cfg_truncation: float = 1.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[List[torch.FloatTensor]] = None, | |
| negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| height (`int`, *optional*, defaults to 1024): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 1024): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| cfg_normalization (`bool`, *optional*, defaults to False): | |
| Whether to apply configuration normalization. | |
| cfg_truncation (`float`, *optional*, defaults to 1.0): | |
| The truncation value for configuration. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`List[torch.FloatTensor]`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain | |
| tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int`, *optional*, defaults to 512): | |
| Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if | |
| `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the | |
| generated images. | |
| """ | |
| height = height or 1024 | |
| width = width or 1024 | |
| vae_scale = self.vae_scale_factor * 2 | |
| if height % vae_scale != 0: | |
| raise ValueError( | |
| f"Height must be divisible by {vae_scale} (got {height}). " | |
| f"Please adjust the height to a multiple of {vae_scale}." | |
| ) | |
| if width % vae_scale != 0: | |
| raise ValueError( | |
| f"Width must be divisible by {vae_scale} (got {width}). " | |
| f"Please adjust the width to a multiple of {vae_scale}." | |
| ) | |
| device = self._execution_device | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| self._cfg_normalization = cfg_normalization | |
| self._cfg_truncation = cfg_truncation | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = len(prompt_embeds) | |
| # If prompt_embeds is provided and prompt is None, skip encoding | |
| if prompt_embeds is not None and prompt is None: | |
| if self.do_classifier_free_guidance and negative_prompt_embeds is None: | |
| raise ValueError( | |
| "When `prompt_embeds` is provided without `prompt`, " | |
| "`negative_prompt_embeds` must also be provided for classifier-free guidance." | |
| ) | |
| else: | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| device=device, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| torch.float32, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # Repeat prompt_embeds for num_images_per_prompt | |
| if num_images_per_prompt > 1: | |
| prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)] | |
| if self.do_classifier_free_guidance and negative_prompt_embeds: | |
| negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)] | |
| actual_batch_size = batch_size * num_images_per_prompt | |
| image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2) | |
| # 5. Prepare timesteps | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| self.scheduler.sigma_min = 0.0 | |
| scheduler_kwargs = {"mu": mu} | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| **scheduler_kwargs, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]) | |
| timestep = (1000 - timestep) / 1000 | |
| # Normalized time for time-aware config (0 at start, 1 at end) | |
| t_norm = timestep[0].item() | |
| # Handle cfg truncation | |
| current_guidance_scale = self.guidance_scale | |
| if ( | |
| self.do_classifier_free_guidance | |
| and self._cfg_truncation is not None | |
| and float(self._cfg_truncation) <= 1 | |
| ): | |
| if t_norm > self._cfg_truncation: | |
| current_guidance_scale = 0.0 | |
| # Run CFG only if configured AND scale is non-zero | |
| apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0 | |
| if apply_cfg: | |
| latents_typed = latents.to(self.transformer.dtype) | |
| latent_model_input = latents_typed.repeat(2, 1, 1, 1) | |
| prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds | |
| timestep_model_input = timestep.repeat(2) | |
| else: | |
| latent_model_input = latents.to(self.transformer.dtype) | |
| prompt_embeds_model_input = prompt_embeds | |
| timestep_model_input = timestep | |
| latent_model_input = latent_model_input.unsqueeze(2) | |
| latent_model_input_list = list(latent_model_input.unbind(dim=0)) | |
| model_out_list = self.transformer( | |
| latent_model_input_list, | |
| timestep_model_input, | |
| prompt_embeds_model_input, | |
| )[0] | |
| if apply_cfg: | |
| # Perform CFG | |
| pos_out = model_out_list[:actual_batch_size] | |
| neg_out = model_out_list[actual_batch_size:] | |
| noise_pred = [] | |
| for j in range(actual_batch_size): | |
| pos = pos_out[j].float() | |
| neg = neg_out[j].float() | |
| pred = pos + current_guidance_scale * (pos - neg) | |
| # Renormalization | |
| if self._cfg_normalization and float(self._cfg_normalization) > 0.0: | |
| ori_pos_norm = torch.linalg.vector_norm(pos) | |
| new_pos_norm = torch.linalg.vector_norm(pred) | |
| max_new_norm = ori_pos_norm * float(self._cfg_normalization) | |
| if new_pos_norm > max_new_norm: | |
| pred = pred * (max_new_norm / new_pos_norm) | |
| noise_pred.append(pred) | |
| noise_pred = torch.stack(noise_pred, dim=0) | |
| else: | |
| noise_pred = torch.stack([t.float() for t in model_out_list], dim=0) | |
| noise_pred = noise_pred.squeeze(2) | |
| noise_pred = -noise_pred | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0] | |
| assert latents.dtype == torch.float32 | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = latents.to(self.vae.dtype) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ZImagePipelineOutput(images=image) |