Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| import math | |
| from copy import deepcopy | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import copy | |
| import torch | |
| import cv2 | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.utils import BaseOutput, logging, replace_example_docstring | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.video_processor import VideoProcessor | |
| from decord import VideoReader | |
| from ..models import (AutoencoderKLWan, AutoTokenizer, CLIPModel, | |
| WanT5EncoderModel, Wan2_2Transformer3DModel_Animate) | |
| from ..utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas) | |
| from ..utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```python | |
| pass | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class WanPipelineOutput(BaseOutput): | |
| r""" | |
| Output class for CogVideo pipelines. | |
| Args: | |
| video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
| List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
| denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
| `(batch_size, num_frames, channels, height, width)`. | |
| """ | |
| videos: torch.Tensor | |
| class Wan2_2AnimatePipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using Wan. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| """ | |
| _optional_components = ["transformer_2", "clip_image_encoder"] | |
| model_cpu_offload_seq = "text_encoder->clip_image_encoder->transformer_2->transformer->vae" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: WanT5EncoderModel, | |
| vae: AutoencoderKLWan, | |
| transformer: Wan2_2Transformer3DModel_Animate, | |
| transformer_2: Wan2_2Transformer3DModel_Animate = None, | |
| clip_image_encoder: CLIPModel = None, | |
| scheduler: FlowMatchEulerDiscreteScheduler = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, | |
| transformer_2=transformer_2, clip_image_encoder=clip_image_encoder, scheduler=scheduler | |
| ) | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae.spatial_compression_ratio) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae.spatial_compression_ratio) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae.spatial_compression_ratio, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
| ) | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_videos_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_attention_mask = text_inputs.attention_mask | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| seq_lens = prompt_attention_mask.gt(0).sum(dim=1).long() | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask.to(device))[0] | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| _, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| return [u[:v] for u, v in zip(prompt_embeds, seq_lens)] | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| do_classifier_free_guidance: bool = True, | |
| num_videos_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| Whether to use classifier free guidance or not. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| device: (`torch.device`, *optional*): | |
| torch device | |
| dtype: (`torch.dtype`, *optional*): | |
| torch dtype | |
| """ | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| negative_prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=negative_prompt, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| return prompt_embeds, negative_prompt_embeds | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| (num_frames - 1) // self.vae.temporal_compression_ratio + 1, | |
| height // self.vae.spatial_compression_ratio, | |
| width // self.vae.spatial_compression_ratio, | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| if hasattr(self.scheduler, "init_noise_sigma"): | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def padding_resize(self, img_ori, height=512, width=512, padding_color=(0, 0, 0), interpolation=cv2.INTER_LINEAR): | |
| ori_height = img_ori.shape[0] | |
| ori_width = img_ori.shape[1] | |
| channel = img_ori.shape[2] | |
| img_pad = np.zeros((height, width, channel)) | |
| if channel == 1: | |
| img_pad[:, :, 0] = padding_color[0] | |
| else: | |
| img_pad[:, :, 0] = padding_color[0] | |
| img_pad[:, :, 1] = padding_color[1] | |
| img_pad[:, :, 2] = padding_color[2] | |
| if (ori_height / ori_width) > (height / width): | |
| new_width = int(height / ori_height * ori_width) | |
| img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation) | |
| padding = int((width - new_width) / 2) | |
| if len(img.shape) == 2: | |
| img = img[:, :, np.newaxis] | |
| img_pad[:, padding: padding + new_width, :] = img | |
| else: | |
| new_height = int(width / ori_width * ori_height) | |
| img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation) | |
| padding = int((height - new_height) / 2) | |
| if len(img.shape) == 2: | |
| img = img[:, :, np.newaxis] | |
| img_pad[padding: padding + new_height, :, :] = img | |
| img_pad = np.uint8(img_pad) | |
| return img_pad | |
| def inputs_padding(self, x, target_len): | |
| ndim = x.ndim | |
| if ndim == 4: | |
| f = x.shape[0] | |
| if target_len <= f: | |
| return [deepcopy(x[i]) for i in range(target_len)] | |
| idx = 0 | |
| flip = False | |
| target_array = [] | |
| while len(target_array) < target_len: | |
| target_array.append(deepcopy(x[idx])) | |
| if flip: | |
| idx -= 1 | |
| else: | |
| idx += 1 | |
| if idx == 0 or idx == f - 1: | |
| flip = not flip | |
| return target_array[:target_len] | |
| elif ndim == 5: | |
| b, c, f, h, w = x.shape | |
| if target_len <= f: | |
| return x[:, :, :target_len, :, :] | |
| indices = [] | |
| idx = 0 | |
| flip = False | |
| while len(indices) < target_len: | |
| indices.append(idx) | |
| if flip: | |
| idx -= 1 | |
| else: | |
| idx += 1 | |
| if idx == 0 or idx == f - 1: | |
| flip = not flip | |
| indices = indices[:target_len] | |
| if isinstance(x, torch.Tensor): | |
| indices_tensor = torch.tensor(indices, device=x.device, dtype=torch.long) | |
| return x[:, :, indices_tensor, :, :] | |
| else: | |
| indices_array = np.array(indices) | |
| return x[:, :, indices_array, :, :] | |
| else: | |
| raise ValueError(f"Unsupported input dimension: {ndim}. Expected 4D or 5D.") | |
| def get_valid_len(self, real_len, clip_len=81, overlap=1): | |
| real_clip_len = clip_len - overlap | |
| last_clip_num = (real_len - overlap) % real_clip_len | |
| if last_clip_num == 0: | |
| extra = 0 | |
| else: | |
| extra = real_clip_len - last_clip_num | |
| target_len = real_len + extra | |
| return target_len | |
| def prepare_source(self, src_pose_path, src_face_path, src_ref_path): | |
| pose_video_reader = VideoReader(src_pose_path) | |
| pose_len = len(pose_video_reader) | |
| pose_idxs = list(range(pose_len)) | |
| pose_video = pose_video_reader.get_batch(pose_idxs).asnumpy() | |
| face_video_reader = VideoReader(src_face_path) | |
| face_len = len(face_video_reader) | |
| face_idxs = list(range(face_len)) | |
| face_video = face_video_reader.get_batch(face_idxs).asnumpy() | |
| height, width = pose_video[0].shape[:2] | |
| ref_image = cv2.imread(src_ref_path)[..., ::-1] | |
| ref_image = self.padding_resize(ref_image, height=height, width=width) | |
| return pose_video, face_video, ref_image | |
| def prepare_source_for_replace(self, src_bg_path, src_mask_path): | |
| bg_video_reader = VideoReader(src_bg_path) | |
| bg_len = len(bg_video_reader) | |
| bg_idxs = list(range(bg_len)) | |
| bg_video = bg_video_reader.get_batch(bg_idxs).asnumpy() | |
| mask_video_reader = VideoReader(src_mask_path) | |
| mask_len = len(mask_video_reader) | |
| mask_idxs = list(range(mask_len)) | |
| mask_video = mask_video_reader.get_batch(mask_idxs).asnumpy() | |
| mask_video = mask_video[:, :, :, 0] / 255 | |
| return bg_video, mask_video | |
| def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"): | |
| if mask_pixel_values is None: | |
| msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device) | |
| else: | |
| msk = mask_pixel_values.clone() | |
| msk[:, :mask_len] = 1 | |
| msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1, 2) | |
| return msk | |
| def prepare_control_latents( | |
| self, control, control_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance | |
| ): | |
| # resize the control to latents shape as we concatenate the control to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| if control is not None: | |
| control = control.to(device=device, dtype=dtype) | |
| bs = 1 | |
| new_control = [] | |
| for i in range(0, control.shape[0], bs): | |
| control_bs = control[i : i + bs] | |
| control_bs = self.vae.encode(control_bs)[0] | |
| control_bs = control_bs.mode() | |
| new_control.append(control_bs) | |
| control = torch.cat(new_control, dim = 0) | |
| if control_image is not None: | |
| control_image = control_image.to(device=device, dtype=dtype) | |
| bs = 1 | |
| new_control_pixel_values = [] | |
| for i in range(0, control_image.shape[0], bs): | |
| control_pixel_values_bs = control_image[i : i + bs] | |
| control_pixel_values_bs = self.vae.encode(control_pixel_values_bs)[0] | |
| control_pixel_values_bs = control_pixel_values_bs.mode() | |
| new_control_pixel_values.append(control_pixel_values_bs) | |
| control_image_latents = torch.cat(new_control_pixel_values, dim = 0) | |
| else: | |
| control_image_latents = None | |
| return control, control_image_latents | |
| def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
| frames = self.vae.decode(latents.to(self.vae.dtype)).sample | |
| frames = (frames / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| # frames = frames.cpu().float().numpy() | |
| return frames | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def attention_kwargs(self): | |
| return self._attention_kwargs | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 480, | |
| width: int = 720, | |
| clip_len=77, | |
| num_frames: int = 49, | |
| num_inference_steps: int = 50, | |
| pose_video = None, | |
| face_video = None, | |
| ref_image = None, | |
| bg_video = None, | |
| mask_video = None, | |
| replace_flag = True, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 6, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "numpy", | |
| return_dict: bool = False, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| boundary: float = 0.875, | |
| comfyui_progressbar: bool = False, | |
| shift: int = 5, | |
| refert_num = 1, | |
| ) -> Union[WanPipelineOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| Examples: | |
| Returns: | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| # 2. Default call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| weight_dtype = self.text_encoder.dtype | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| in_prompt_embeds = negative_prompt_embeds + prompt_embeds | |
| else: | |
| in_prompt_embeds = prompt_embeds | |
| if comfyui_progressbar: | |
| from comfy.utils import ProgressBar | |
| pbar = ProgressBar(num_inference_steps + 1) | |
| # 4. Prepare latents | |
| if pose_video is not None: | |
| video_length = pose_video.shape[2] | |
| pose_video = self.image_processor.preprocess(rearrange(pose_video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| pose_video = pose_video.to(dtype=torch.float32) | |
| pose_video = rearrange(pose_video, "(b f) c h w -> b c f h w", f=video_length) | |
| else: | |
| pose_video = None | |
| if face_video is not None: | |
| video_length = face_video.shape[2] | |
| face_video = self.image_processor.preprocess(rearrange(face_video, "b c f h w -> (b f) c h w")) | |
| face_video = face_video.to(dtype=torch.float32) | |
| face_video = rearrange(face_video, "(b f) c h w -> b c f h w", f=video_length) | |
| else: | |
| face_video = None | |
| real_frame_len = pose_video.size()[2] | |
| target_len = self.get_valid_len(real_frame_len, clip_len, overlap=refert_num) | |
| print('real frames: {} target frames: {}'.format(real_frame_len, target_len)) | |
| pose_video = self.inputs_padding(pose_video, target_len).to(device, weight_dtype) | |
| face_video = self.inputs_padding(face_video, target_len).to(device, weight_dtype) | |
| ref_image = self.padding_resize(np.array(ref_image), height=height, width=width) | |
| ref_image = torch.tensor(ref_image / 127.5 - 1).unsqueeze(0).permute([3, 0, 1, 2]).unsqueeze(0).to(device, weight_dtype) | |
| if replace_flag: | |
| if bg_video is not None: | |
| video_length = bg_video.shape[2] | |
| bg_video = self.image_processor.preprocess(rearrange(bg_video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| bg_video = bg_video.to(dtype=torch.float32) | |
| bg_video = rearrange(bg_video, "(b f) c h w -> b c f h w", f=video_length) | |
| else: | |
| bg_video = None | |
| bg_video = self.inputs_padding(bg_video, target_len).to(device, weight_dtype) | |
| mask_video = self.inputs_padding(mask_video, target_len).to(device, weight_dtype) | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| target_shape = (self.vae.latent_channels, (num_frames - 1) // self.vae.temporal_compression_ratio + 1, width // self.vae.spatial_compression_ratio, height // self.vae.spatial_compression_ratio) | |
| seq_len = math.ceil((target_shape[2] * target_shape[3]) / (self.transformer.config.patch_size[1] * self.transformer.config.patch_size[2]) * target_shape[1]) | |
| # 6. Denoising loop | |
| start = 0 | |
| end = clip_len | |
| all_out_frames = [] | |
| copy_timesteps = copy.deepcopy(timesteps) | |
| copy_latents = copy.deepcopy(latents) | |
| bs = pose_video.size()[0] | |
| while True: | |
| if start + refert_num >= pose_video.size()[2]: | |
| break | |
| # Prepare timesteps | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, copy_timesteps, mu=1) | |
| elif isinstance(self.scheduler, FlowUniPCMultistepScheduler): | |
| self.scheduler.set_timesteps(num_inference_steps, device=device, shift=shift) | |
| timesteps = self.scheduler.timesteps | |
| elif isinstance(self.scheduler, FlowDPMSolverMultistepScheduler): | |
| sampling_sigmas = get_sampling_sigmas(num_inference_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| self.scheduler, | |
| device=device, | |
| sigmas=sampling_sigmas) | |
| else: | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, copy_timesteps) | |
| self._num_timesteps = len(timesteps) | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| num_frames, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| copy_latents, | |
| ) | |
| if start == 0: | |
| mask_reft_len = 0 | |
| else: | |
| mask_reft_len = refert_num | |
| conditioning_pixel_values = pose_video[:, :, start:end] | |
| face_pixel_values = face_video[:, :, start:end] | |
| ref_pixel_values = ref_image.clone().detach() | |
| if start > 0: | |
| refer_t_pixel_values = out_frames[:, :, -refert_num:].clone().detach() | |
| refer_t_pixel_values = (refer_t_pixel_values - 0.5) / 0.5 | |
| else: | |
| refer_t_pixel_values = torch.zeros(bs, 3, refert_num, height, width) | |
| refer_t_pixel_values = refer_t_pixel_values.to(device=device, dtype=weight_dtype) | |
| pose_latents, ref_latents = self.prepare_control_latents( | |
| conditioning_pixel_values, | |
| ref_pixel_values, | |
| batch_size, | |
| height, | |
| width, | |
| weight_dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance | |
| ) | |
| mask_ref = self.get_i2v_mask(1, target_shape[-1], target_shape[-2], 1, device=device) | |
| y_ref = torch.concat([mask_ref, ref_latents], dim=1).to(device=device, dtype=weight_dtype) | |
| if mask_reft_len > 0: | |
| if replace_flag: | |
| # Image.fromarray(np.array((refer_t_pixel_values[0, :, 0].permute(1,2,0) * 0.5 + 0.5).float().cpu().numpy() *255, np.uint8)).save("1.jpg") | |
| bg_pixel_values = bg_video[:, :, start:end] | |
| y_reft = self.vae.encode( | |
| torch.concat( | |
| [ | |
| refer_t_pixel_values[:, :, :mask_reft_len], | |
| bg_pixel_values[:, :, mask_reft_len:] | |
| ], dim=2 | |
| ).to(device=device, dtype=weight_dtype) | |
| )[0].mode() | |
| mask_pixel_values = 1 - mask_video[:, :, start:end] | |
| mask_pixel_values = rearrange(mask_pixel_values, "b c t h w -> (b t) c h w") | |
| mask_pixel_values = F.interpolate(mask_pixel_values, size=(target_shape[-1], target_shape[-2]), mode='nearest') | |
| mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b c t h w", b = bs)[:, 0] | |
| msk_reft = self.get_i2v_mask( | |
| int((clip_len - 1) // self.vae.temporal_compression_ratio + 1), target_shape[-1], target_shape[-2], mask_reft_len, mask_pixel_values=mask_pixel_values, device=device | |
| ) | |
| else: | |
| refer_t_pixel_values = rearrange(refer_t_pixel_values[:, :, :mask_reft_len], "b c t h w -> (b t) c h w") | |
| refer_t_pixel_values = F.interpolate(refer_t_pixel_values, size=(height, width), mode="bicubic") | |
| refer_t_pixel_values = rearrange(refer_t_pixel_values, "(b t) c h w -> b c t h w", b = bs) | |
| y_reft = self.vae.encode( | |
| torch.concat( | |
| [ | |
| refer_t_pixel_values, | |
| torch.zeros(bs, 3, clip_len - mask_reft_len, height, width).to(device=device, dtype=weight_dtype), | |
| ], dim=2, | |
| ).to(device=device, dtype=weight_dtype) | |
| )[0].mode() | |
| msk_reft = self.get_i2v_mask( | |
| int((clip_len - 1) // self.vae.temporal_compression_ratio + 1), target_shape[-1], target_shape[-2], mask_reft_len, device=device | |
| ) | |
| else: | |
| if replace_flag: | |
| bg_pixel_values = bg_video[:, :, start:end] | |
| y_reft = self.vae.encode( | |
| bg_pixel_values.to(device=device, dtype=weight_dtype) | |
| )[0].mode() | |
| mask_pixel_values = 1 - mask_video[:, :, start:end] | |
| mask_pixel_values = rearrange(mask_pixel_values, "b c t h w -> (b t) c h w") | |
| mask_pixel_values = F.interpolate(mask_pixel_values, size=(target_shape[-1], target_shape[-2]), mode='nearest') | |
| mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b c t h w", b = bs)[:, 0] | |
| msk_reft = self.get_i2v_mask( | |
| int((clip_len - 1) // self.vae.temporal_compression_ratio + 1), target_shape[-1], target_shape[-2], mask_reft_len, mask_pixel_values=mask_pixel_values, device=device | |
| ) | |
| else: | |
| y_reft = self.vae.encode( | |
| torch.zeros(1, 3, clip_len - mask_reft_len, height, width).to(device=device, dtype=weight_dtype) | |
| )[0].mode() | |
| msk_reft = self.get_i2v_mask( | |
| int((clip_len - 1) // self.vae.temporal_compression_ratio + 1), target_shape[-1], target_shape[-2], mask_reft_len, device=device | |
| ) | |
| y_reft = torch.concat([msk_reft, y_reft], dim=1).to(device=device, dtype=weight_dtype) | |
| y = torch.concat([y_ref, y_reft], dim=2) | |
| clip_context = self.clip_image_encoder([ref_pixel_values[0, :, :, :]]).to(device=device, dtype=weight_dtype) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self.transformer.num_inference_steps = num_inference_steps | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| self.transformer.current_steps = i | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if hasattr(self.scheduler, "scale_model_input"): | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| y_in = torch.cat([y] * 2) if do_classifier_free_guidance else y | |
| clip_context_input = ( | |
| torch.cat([clip_context] * 2) if do_classifier_free_guidance else clip_context | |
| ) | |
| pose_latents_input = ( | |
| torch.cat([pose_latents] * 2) if do_classifier_free_guidance else pose_latents | |
| ) | |
| face_pixel_values_input = ( | |
| torch.cat([torch.ones_like(face_pixel_values) * -1] + [face_pixel_values]) if do_classifier_free_guidance else face_pixel_values | |
| ) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| if self.transformer_2 is not None: | |
| if t >= boundary * self.scheduler.config.num_train_timesteps: | |
| local_transformer = self.transformer_2 | |
| else: | |
| local_transformer = self.transformer | |
| else: | |
| local_transformer = self.transformer | |
| # predict noise model_output | |
| with torch.cuda.amp.autocast(dtype=weight_dtype), torch.cuda.device(device=device): | |
| noise_pred = local_transformer( | |
| x=latent_model_input, | |
| context=in_prompt_embeds, | |
| t=timestep, | |
| seq_len=seq_len, | |
| y=y_in, | |
| clip_fea=clip_context_input, | |
| pose_latents=pose_latents_input, | |
| face_pixel_values=face_pixel_values_input, | |
| ) | |
| # Perform guidance | |
| if do_classifier_free_guidance: | |
| if self.transformer_2 is not None and (isinstance(self.guidance_scale, (list, tuple))): | |
| sample_guide_scale = self.guidance_scale[1] if t >= self.transformer_2.config.boundary * self.scheduler.config.num_train_timesteps else self.guidance_scale[0] | |
| else: | |
| sample_guide_scale = self.guidance_scale | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + sample_guide_scale * (noise_pred_text - noise_pred_uncond) | |
| # Compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| out_frames = self.decode_latents(latents[:, :, 1:]) | |
| if start != 0: | |
| out_frames = out_frames[:, :, refert_num:] | |
| all_out_frames.append(out_frames.cpu()) | |
| start += clip_len - refert_num | |
| end += clip_len - refert_num | |
| videos = torch.cat(all_out_frames, dim=2)[:, :, :real_frame_len] | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return WanPipelineOutput(videos=videos.float().cpu()) | |