ZIT-Controlnet / videox_fun /models /flux2_transformer2d_control.py
Alexander Bagus
22
be751d2
# Modified from https://github.com/ali-vilab/VACE/blob/main/control/models/wan/wan_control.py
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import glob
import inspect
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (TimestepEmbedding, Timesteps,
apply_rotary_emb,
get_1d_rotary_pos_embed)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available,
is_torch_version, logging, scale_lora_layers,
unscale_lora_layers)
from .flux2_transformer2d import (Flux2SingleTransformerBlock,
Flux2Transformer2DModel,
Flux2TransformerBlock)
class Flux2ControlTransformerBlock(Flux2TransformerBlock):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
block_id=0
):
super().__init__(dim, num_attention_heads, attention_head_dim, mlp_ratio, eps, bias)
self.block_id = block_id
if block_id == 0:
self.before_proj = nn.Linear(dim, dim)
nn.init.zeros_(self.before_proj.weight)
nn.init.zeros_(self.before_proj.bias)
self.after_proj = nn.Linear(dim, dim)
nn.init.zeros_(self.after_proj.weight)
nn.init.zeros_(self.after_proj.bias)
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
all_c = []
else:
all_c = list(torch.unbind(c))
c = all_c.pop(-1)
encoder_hidden_states, c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
all_c += [c_skip, c]
c = torch.stack(all_c)
return encoder_hidden_states, c
class BaseFlux2TransformerBlock(Flux2TransformerBlock):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 3.0,
eps: float = 1e-6,
bias: bool = False,
block_id=0
):
super().__init__(dim, num_attention_heads, attention_head_dim, mlp_ratio, eps, bias)
self.block_id = block_id
def forward(self, hidden_states, hints=None, context_scale=1.0, **kwargs):
encoder_hidden_states, hidden_states = super().forward(hidden_states, **kwargs)
if self.block_id is not None:
hidden_states = hidden_states + hints[self.block_id] * context_scale
return encoder_hidden_states, hidden_states
class Flux2ControlTransformer2DModel(Flux2Transformer2DModel):
@register_to_config
def __init__(
self,
control_layers=None,
control_in_dim=None,
patch_size: int = 1,
in_channels: int = 128,
out_channels: Optional[int] = None,
num_layers: int = 8,
num_single_layers: int = 48,
attention_head_dim: int = 128,
num_attention_heads: int = 48,
joint_attention_dim: int = 15360,
timestep_guidance_channels: int = 256,
mlp_ratio: float = 3.0,
axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
rope_theta: int = 2000,
eps: float = 1e-6,
):
super().__init__(
patch_size, in_channels, out_channels, num_layers, num_single_layers, attention_head_dim,
num_attention_heads, joint_attention_dim, timestep_guidance_channels, mlp_ratio, axes_dims_rope,
rope_theta, eps
)
self.control_layers = [i for i in range(0, self.num_layers, 2)] if control_layers is None else control_layers
self.control_in_dim = self.in_dim if control_in_dim is None else control_in_dim
assert 0 in self.control_layers
self.control_layers_mapping = {i: n for n, i in enumerate(self.control_layers)}
# blocks
del self.transformer_blocks
self.transformer_blocks = nn.ModuleList(
[
BaseFlux2TransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
block_id=self.control_layers_mapping[i] if i in self.control_layers else None
)
for i in range(num_layers)
]
)
# control blocks
self.control_transformer_blocks = nn.ModuleList(
[
Flux2ControlTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
eps=eps,
block_id=i
)
for i in self.control_layers
]
)
# control patch embeddings
self.control_img_in = nn.Linear(self.control_in_dim, self.inner_dim)
def forward_control(
self,
x,
control_context,
kwargs
):
# embeddings
c = self.control_img_in(control_context)
# Context Parallel
if self.sp_world_size > 1:
c = torch.chunk(c, self.sp_world_size, dim=1)[self.sp_world_rank]
# arguments
new_kwargs = dict(x=x)
new_kwargs.update(kwargs)
for block in self.control_transformer_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, **static_kwargs):
def custom_forward(*inputs):
return module(*inputs, **static_kwargs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, c = torch.utils.checkpoint.checkpoint(
create_custom_forward(block, **new_kwargs),
c,
**ckpt_kwargs,
)
else:
encoder_hidden_states, c = block(c, **new_kwargs)
new_kwargs["encoder_hidden_states"] = encoder_hidden_states
hints = torch.unbind(c)[:-1]
return hints
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
control_context=None,
control_context_scale=1.0,
return_dict: bool = True,
):
num_txt_tokens = encoder_hidden_states.shape[1]
# 1. Calculate timestep embedding and modulation parameters
timestep = timestep.to(hidden_states.dtype) * 1000
guidance = guidance.to(hidden_states.dtype) * 1000
temb = self.time_guidance_embed(timestep, guidance)
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
# 3. Calculate RoPE embeddings from image and text tokens
# NOTE: the below logic means that we can't support batched inference with images of different resolutions or
# text prompts of differents lengths. Is this a use case we want to support?
if img_ids.ndim == 3:
img_ids = img_ids[0]
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if is_torch_npu_available():
freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
else:
image_rotary_emb = self.pos_embed(img_ids)
text_rotary_emb = self.pos_embed(txt_ids)
concat_rotary_emb = (
torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),
)
# Arguments
kwargs = dict(
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
hints = self.forward_control(
hidden_states, control_context, kwargs
)
for index_block, block in enumerate(self.transformer_blocks):
# Arguments
kwargs = dict(
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
hints=hints,
context_scale=control_context_scale
)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, **static_kwargs):
def custom_forward(*inputs):
return module(*inputs, **static_kwargs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block, **kwargs),
hidden_states,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(hidden_states, **kwargs)
for index_block, block in enumerate(self.single_transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
single_stream_mod,
concat_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# 6. Output layers
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)