Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import glob | |
| import inspect | |
| import json | |
| import os | |
| import math | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pad_sequence | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import RMSNorm | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from diffusers.models.attention_processor import Attention, AttentionProcessor | |
| from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging, | |
| scale_lora_layers, unscale_lora_layers) | |
| from .attention_utils import attention | |
| from ..dist import (ZMultiGPUsSingleStreamAttnProcessor, get_sequence_parallel_rank, | |
| get_sequence_parallel_world_size, get_sp_group) | |
| ADALN_EMBED_DIM = 256 | |
| SEQ_MULTI_OF = 32 | |
| class TimestepEmbedder(nn.Module): | |
| def __init__(self, out_size, mid_size=None, frequency_embedding_size=256): | |
| super().__init__() | |
| if mid_size is None: | |
| mid_size = out_size | |
| self.mlp = nn.Sequential( | |
| nn.Linear( | |
| frequency_embedding_size, | |
| mid_size, | |
| bias=True, | |
| ), | |
| nn.SiLU(), | |
| nn.Linear( | |
| mid_size, | |
| out_size, | |
| bias=True, | |
| ), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000): | |
| with torch.amp.autocast("cuda", enabled=False): | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half | |
| ) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| weight_dtype = self.mlp[0].weight.dtype | |
| if weight_dtype.is_floating_point: | |
| t_freq = t_freq.to(weight_dtype) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class ZSingleStreamAttnProcessor: | |
| """ | |
| Processor for Z-Image single stream attention that adapts the existing Attention class to match the behavior of the | |
| original Z-ImageAttention module. | |
| """ | |
| _attention_backend = None | |
| _parallel_config = None | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "ZSingleStreamAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| freqs_cis: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| query = query.unflatten(-1, (attn.heads, -1)) | |
| key = key.unflatten(-1, (attn.heads, -1)) | |
| value = value.unflatten(-1, (attn.heads, -1)) | |
| # Apply Norms | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # Apply RoPE | |
| def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: | |
| with torch.amp.autocast("cuda", enabled=False): | |
| x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) | |
| freqs_cis = freqs_cis.unsqueeze(2) | |
| x_out = torch.view_as_real(x * freqs_cis).flatten(3) | |
| return x_out.type_as(x_in) # todo | |
| if freqs_cis is not None: | |
| query = apply_rotary_emb(query, freqs_cis) | |
| key = apply_rotary_emb(key, freqs_cis) | |
| # Cast to correct dtype | |
| dtype = query.dtype | |
| query, key = query.to(dtype), key.to(dtype) | |
| # From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len] | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| attention_mask = attention_mask[:, None, None, :] | |
| # Compute joint attention | |
| hidden_states = attention( | |
| query, | |
| key, | |
| value, | |
| attn_mask=attention_mask | |
| ) | |
| # Reshape back | |
| hidden_states = hidden_states.flatten(2, 3) | |
| hidden_states = hidden_states.to(dtype) | |
| output = attn.to_out[0](hidden_states) | |
| if len(attn.to_out) > 1: # dropout | |
| output = attn.to_out[1](output) | |
| return output | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim: int, hidden_dim: int): | |
| super().__init__() | |
| self.w1 = nn.Linear(dim, hidden_dim, bias=False) | |
| self.w2 = nn.Linear(hidden_dim, dim, bias=False) | |
| self.w3 = nn.Linear(dim, hidden_dim, bias=False) | |
| def _forward_silu_gating(self, x1, x3): | |
| return F.silu(x1) * x3 | |
| def forward(self, x): | |
| return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) | |
| class ZImageTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| layer_id: int, | |
| dim: int, | |
| n_heads: int, | |
| n_kv_heads: int, | |
| norm_eps: float, | |
| qk_norm: bool, | |
| modulation=True, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.head_dim = dim // n_heads | |
| # Refactored to use diffusers Attention with custom processor | |
| # Original Z-Image params: dim, n_heads, n_kv_heads, qk_norm | |
| self.attention = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // n_heads, | |
| heads=n_heads, | |
| qk_norm="rms_norm" if qk_norm else None, | |
| eps=1e-5, | |
| bias=False, | |
| out_bias=False, | |
| processor=ZSingleStreamAttnProcessor(), | |
| ) | |
| self.feed_forward = FeedForward(dim=dim, hidden_dim=int(dim / 3 * 8)) | |
| self.layer_id = layer_id | |
| self.attention_norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.attention_norm2 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) | |
| self.modulation = modulation | |
| if modulation: | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.Linear(min(dim, ADALN_EMBED_DIM), 4 * dim, bias=True), | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attn_mask: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| adaln_input: Optional[torch.Tensor] = None, | |
| ): | |
| if self.modulation: | |
| assert adaln_input is not None | |
| scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2) | |
| gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh() | |
| scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp | |
| # Attention block | |
| attn_out = self.attention( | |
| self.attention_norm1(x) * scale_msa, | |
| attention_mask=attn_mask, | |
| freqs_cis=freqs_cis, | |
| ) | |
| x = x + gate_msa * self.attention_norm2(attn_out) | |
| # FFN block | |
| x = x + gate_mlp * self.ffn_norm2( | |
| self.feed_forward( | |
| self.ffn_norm1(x) * scale_mlp, | |
| ) | |
| ) | |
| else: | |
| # Attention block | |
| attn_out = self.attention( | |
| self.attention_norm1(x), | |
| attention_mask=attn_mask, | |
| freqs_cis=freqs_cis, | |
| ) | |
| x = x + self.attention_norm2(attn_out) | |
| # FFN block | |
| x = x + self.ffn_norm2( | |
| self.feed_forward( | |
| self.ffn_norm1(x), | |
| ) | |
| ) | |
| return x | |
| class FinalLayer(nn.Module): | |
| def __init__(self, hidden_size, out_channels): | |
| super().__init__() | |
| self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
| self.linear = nn.Linear(hidden_size, out_channels, bias=True) | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True), | |
| ) | |
| def forward(self, x, c): | |
| scale = 1.0 + self.adaLN_modulation(c) | |
| x = self.norm_final(x) * scale.unsqueeze(1) | |
| x = self.linear(x) | |
| return x | |
| class RopeEmbedder: | |
| def __init__( | |
| self, | |
| theta: float = 256.0, | |
| axes_dims: List[int] = (16, 56, 56), | |
| axes_lens: List[int] = (64, 128, 128), | |
| ): | |
| self.theta = theta | |
| self.axes_dims = axes_dims | |
| self.axes_lens = axes_lens | |
| assert len(axes_dims) == len(axes_lens), "axes_dims and axes_lens must have the same length" | |
| self.freqs_cis = None | |
| def precompute_freqs_cis(dim: List[int], end: List[int], theta: float = 256.0): | |
| with torch.device("cpu"): | |
| freqs_cis = [] | |
| for i, (d, e) in enumerate(zip(dim, end)): | |
| freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d)) | |
| timestep = torch.arange(e, device=freqs.device, dtype=torch.float64) | |
| freqs = torch.outer(timestep, freqs).float() | |
| freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64 | |
| freqs_cis.append(freqs_cis_i) | |
| return freqs_cis | |
| def __call__(self, ids: torch.Tensor): | |
| assert ids.ndim == 2 | |
| assert ids.shape[-1] == len(self.axes_dims) | |
| device = ids.device | |
| if self.freqs_cis is None: | |
| self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta) | |
| self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis] | |
| else: | |
| # Ensure freqs_cis are on the same device as ids | |
| if self.freqs_cis[0].device != device: | |
| self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis] | |
| result = [] | |
| for i in range(len(self.axes_dims)): | |
| index = ids[:, i] | |
| result.append(self.freqs_cis[i][index]) | |
| return torch.cat(result, dim=-1) | |
| class ZImageTransformer2DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| _supports_gradient_checkpointing = True | |
| # _no_split_modules = ["ZImageTransformerBlock"] | |
| # _skip_layerwise_casting_patterns = ["t_embedder", "cap_embedder"] # precision sensitive layers | |
| def __init__( | |
| self, | |
| all_patch_size=(2,), | |
| all_f_patch_size=(1,), | |
| in_channels=16, | |
| dim=3840, | |
| n_layers=30, | |
| n_refiner_layers=2, | |
| n_heads=30, | |
| n_kv_heads=30, | |
| norm_eps=1e-5, | |
| qk_norm=True, | |
| cap_feat_dim=2560, | |
| rope_theta=256.0, | |
| t_scale=1000.0, | |
| axes_dims=[32, 48, 48], | |
| axes_lens=[1024, 512, 512], | |
| ) -> None: | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels | |
| self.all_patch_size = all_patch_size | |
| self.all_f_patch_size = all_f_patch_size | |
| self.dim = dim | |
| self.n_heads = n_heads | |
| self.rope_theta = rope_theta | |
| self.t_scale = t_scale | |
| self.gradient_checkpointing = False | |
| assert len(all_patch_size) == len(all_f_patch_size) | |
| all_x_embedder = {} | |
| all_final_layer = {} | |
| for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)): | |
| x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * in_channels, dim, bias=True) | |
| all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder | |
| final_layer = FinalLayer(dim, patch_size * patch_size * f_patch_size * self.out_channels) | |
| all_final_layer[f"{patch_size}-{f_patch_size}"] = final_layer | |
| self.all_x_embedder = nn.ModuleDict(all_x_embedder) | |
| self.all_final_layer = nn.ModuleDict(all_final_layer) | |
| self.noise_refiner = nn.ModuleList( | |
| [ | |
| ZImageTransformerBlock( | |
| 1000 + layer_id, | |
| dim, | |
| n_heads, | |
| n_kv_heads, | |
| norm_eps, | |
| qk_norm, | |
| modulation=True, | |
| ) | |
| for layer_id in range(n_refiner_layers) | |
| ] | |
| ) | |
| self.context_refiner = nn.ModuleList( | |
| [ | |
| ZImageTransformerBlock( | |
| layer_id, | |
| dim, | |
| n_heads, | |
| n_kv_heads, | |
| norm_eps, | |
| qk_norm, | |
| modulation=False, | |
| ) | |
| for layer_id in range(n_refiner_layers) | |
| ] | |
| ) | |
| self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024) | |
| self.cap_embedder = nn.Sequential( | |
| RMSNorm(cap_feat_dim, eps=norm_eps), | |
| nn.Linear(cap_feat_dim, dim, bias=True), | |
| ) | |
| self.x_pad_token = nn.Parameter(torch.empty((1, dim))) | |
| self.cap_pad_token = nn.Parameter(torch.empty((1, dim))) | |
| self.layers = nn.ModuleList( | |
| [ | |
| ZImageTransformerBlock(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm) | |
| for layer_id in range(n_layers) | |
| ] | |
| ) | |
| head_dim = dim // n_heads | |
| assert head_dim == sum(axes_dims) | |
| self.axes_dims = axes_dims | |
| self.axes_lens = axes_lens | |
| self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens) | |
| self.sp_world_size = 1 | |
| self.sp_world_rank = 0 | |
| def _set_gradient_checkpointing(self, *args, **kwargs): | |
| if "value" in kwargs: | |
| self.gradient_checkpointing = kwargs["value"] | |
| elif "enable" in kwargs: | |
| self.gradient_checkpointing = kwargs["enable"] | |
| else: | |
| raise ValueError("Invalid set gradient checkpointing") | |
| def enable_multi_gpus_inference(self,): | |
| self.sp_world_size = get_sequence_parallel_world_size() | |
| self.sp_world_rank = get_sequence_parallel_rank() | |
| self.all_gather = get_sp_group().all_gather | |
| self.set_attn_processor(ZMultiGPUsSingleStreamAttnProcessor()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]: | |
| pH = pW = patch_size | |
| pF = f_patch_size | |
| bsz = len(x) | |
| assert len(size) == bsz | |
| for i in range(bsz): | |
| F, H, W = size[i] | |
| ori_len = (F // pF) * (H // pH) * (W // pW) | |
| # "f h w pf ph pw c -> c (f pf) (h ph) (w pw)" | |
| x[i] = ( | |
| x[i][:ori_len] | |
| .view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels) | |
| .permute(6, 0, 3, 1, 4, 2, 5) | |
| .reshape(self.out_channels, F, H, W) | |
| ) | |
| return x | |
| def create_coordinate_grid(size, start=None, device=None): | |
| if start is None: | |
| start = (0 for _ in size) | |
| axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)] | |
| grids = torch.meshgrid(axes, indexing="ij") | |
| return torch.stack(grids, dim=-1) | |
| def patchify( | |
| self, | |
| all_image: List[torch.Tensor], | |
| patch_size: int, | |
| f_patch_size: int, | |
| cap_padding_len: int, | |
| ): | |
| pH = pW = patch_size | |
| pF = f_patch_size | |
| device = all_image[0].device | |
| all_image_out = [] | |
| all_image_size = [] | |
| all_image_pos_ids = [] | |
| all_image_pad_mask = [] | |
| for i, image in enumerate(all_image): | |
| ### Process Image | |
| C, F, H, W = image.size() | |
| all_image_size.append((F, H, W)) | |
| F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW | |
| image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW) | |
| # "c f pf h ph w pw -> (f h w) (pf ph pw c)" | |
| image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C) | |
| image_ori_len = len(image) | |
| image_padding_len = (-image_ori_len) % SEQ_MULTI_OF | |
| image_ori_pos_ids = self.create_coordinate_grid( | |
| size=(F_tokens, H_tokens, W_tokens), | |
| start=(cap_padding_len + 1, 0, 0), | |
| device=device, | |
| ).flatten(0, 2) | |
| image_padding_pos_ids = ( | |
| self.create_coordinate_grid( | |
| size=(1, 1, 1), | |
| start=(0, 0, 0), | |
| device=device, | |
| ) | |
| .flatten(0, 2) | |
| .repeat(image_padding_len, 1) | |
| ) | |
| image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0) | |
| all_image_pos_ids.append(image_padded_pos_ids) | |
| # pad mask | |
| all_image_pad_mask.append( | |
| torch.cat( | |
| [ | |
| torch.zeros((image_ori_len,), dtype=torch.bool, device=device), | |
| torch.ones((image_padding_len,), dtype=torch.bool, device=device), | |
| ], | |
| dim=0, | |
| ) | |
| ) | |
| # padded feature | |
| image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0) | |
| all_image_out.append(image_padded_feat) | |
| return ( | |
| all_image_out, | |
| all_image_size, | |
| all_image_pos_ids, | |
| all_image_pad_mask, | |
| ) | |
| def patchify_and_embed( | |
| self, | |
| all_image: List[torch.Tensor], | |
| all_cap_feats: List[torch.Tensor], | |
| patch_size: int, | |
| f_patch_size: int, | |
| ): | |
| pH = pW = patch_size | |
| pF = f_patch_size | |
| device = all_image[0].device | |
| all_image_out = [] | |
| all_image_size = [] | |
| all_image_pos_ids = [] | |
| all_image_pad_mask = [] | |
| all_cap_pos_ids = [] | |
| all_cap_pad_mask = [] | |
| all_cap_feats_out = [] | |
| for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)): | |
| ### Process Caption | |
| cap_ori_len = len(cap_feat) | |
| cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF | |
| # padded position ids | |
| cap_padded_pos_ids = self.create_coordinate_grid( | |
| size=(cap_ori_len + cap_padding_len, 1, 1), | |
| start=(1, 0, 0), | |
| device=device, | |
| ).flatten(0, 2) | |
| all_cap_pos_ids.append(cap_padded_pos_ids) | |
| # pad mask | |
| all_cap_pad_mask.append( | |
| torch.cat( | |
| [ | |
| torch.zeros((cap_ori_len,), dtype=torch.bool, device=device), | |
| torch.ones((cap_padding_len,), dtype=torch.bool, device=device), | |
| ], | |
| dim=0, | |
| ) | |
| ) | |
| # padded feature | |
| cap_padded_feat = torch.cat( | |
| [cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], | |
| dim=0, | |
| ) | |
| all_cap_feats_out.append(cap_padded_feat) | |
| ### Process Image | |
| C, F, H, W = image.size() | |
| all_image_size.append((F, H, W)) | |
| F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW | |
| image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW) | |
| # "c f pf h ph w pw -> (f h w) (pf ph pw c)" | |
| image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C) | |
| image_ori_len = len(image) | |
| image_padding_len = (-image_ori_len) % SEQ_MULTI_OF | |
| image_ori_pos_ids = self.create_coordinate_grid( | |
| size=(F_tokens, H_tokens, W_tokens), | |
| start=(cap_ori_len + cap_padding_len + 1, 0, 0), | |
| device=device, | |
| ).flatten(0, 2) | |
| image_padding_pos_ids = ( | |
| self.create_coordinate_grid( | |
| size=(1, 1, 1), | |
| start=(0, 0, 0), | |
| device=device, | |
| ) | |
| .flatten(0, 2) | |
| .repeat(image_padding_len, 1) | |
| ) | |
| image_padded_pos_ids = torch.cat([image_ori_pos_ids, image_padding_pos_ids], dim=0) | |
| all_image_pos_ids.append(image_padded_pos_ids) | |
| # pad mask | |
| all_image_pad_mask.append( | |
| torch.cat( | |
| [ | |
| torch.zeros((image_ori_len,), dtype=torch.bool, device=device), | |
| torch.ones((image_padding_len,), dtype=torch.bool, device=device), | |
| ], | |
| dim=0, | |
| ) | |
| ) | |
| # padded feature | |
| image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0) | |
| all_image_out.append(image_padded_feat) | |
| return ( | |
| all_image_out, | |
| all_cap_feats_out, | |
| all_image_size, | |
| all_image_pos_ids, | |
| all_cap_pos_ids, | |
| all_image_pad_mask, | |
| all_cap_pad_mask, | |
| ) | |
| def forward( | |
| self, | |
| x: List[torch.Tensor], | |
| t, | |
| cap_feats: List[torch.Tensor], | |
| patch_size=2, | |
| f_patch_size=1, | |
| ): | |
| assert patch_size in self.all_patch_size | |
| assert f_patch_size in self.all_f_patch_size | |
| bsz = len(x) | |
| device = x[0].device | |
| t = t * self.t_scale | |
| t = self.t_embedder(t) | |
| ( | |
| x, | |
| cap_feats, | |
| x_size, | |
| x_pos_ids, | |
| cap_pos_ids, | |
| x_inner_pad_mask, | |
| cap_inner_pad_mask, | |
| ) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size) | |
| # x embed & refine | |
| x_item_seqlens = [len(_) for _ in x] | |
| assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens) | |
| x_max_item_seqlen = max(x_item_seqlens) | |
| x = torch.cat(x, dim=0) | |
| x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x) | |
| # Match t_embedder output dtype to x for layerwise casting compatibility | |
| adaln_input = t.type_as(x) | |
| x[torch.cat(x_inner_pad_mask)] = self.x_pad_token | |
| x = list(x.split(x_item_seqlens, dim=0)) | |
| x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split(x_item_seqlens, dim=0)) | |
| x = pad_sequence(x, batch_first=True, padding_value=0.0) | |
| x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0) | |
| x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device) | |
| for i, seq_len in enumerate(x_item_seqlens): | |
| x_attn_mask[i, :seq_len] = 1 | |
| # Context Parallel | |
| if self.sp_world_size > 1: | |
| x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank] | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for layer in self.noise_refiner: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer), | |
| x, x_attn_mask, x_freqs_cis, adaln_input, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| for layer in self.noise_refiner: | |
| x = layer(x, x_attn_mask, x_freqs_cis, adaln_input) | |
| # cap embed & refine | |
| cap_item_seqlens = [len(_) for _ in cap_feats] | |
| assert all(_ % SEQ_MULTI_OF == 0 for _ in cap_item_seqlens) | |
| cap_max_item_seqlen = max(cap_item_seqlens) | |
| cap_feats = torch.cat(cap_feats, dim=0) | |
| cap_feats = self.cap_embedder(cap_feats) | |
| cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token | |
| cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0)) | |
| cap_freqs_cis = list(self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split(cap_item_seqlens, dim=0)) | |
| cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0) | |
| cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0) | |
| cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device) | |
| for i, seq_len in enumerate(cap_item_seqlens): | |
| cap_attn_mask[i, :seq_len] = 1 | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for layer in self.context_refiner: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| cap_feats = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer), | |
| cap_feats, | |
| cap_attn_mask, | |
| cap_freqs_cis, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| for layer in self.context_refiner: | |
| cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis) | |
| # unified | |
| unified = [] | |
| unified_freqs_cis = [] | |
| for i in range(bsz): | |
| x_len = x_item_seqlens[i] | |
| cap_len = cap_item_seqlens[i] | |
| unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]])) | |
| unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]])) | |
| unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)] | |
| assert unified_item_seqlens == [len(_) for _ in unified] | |
| unified_max_item_seqlen = max(unified_item_seqlens) | |
| unified = pad_sequence(unified, batch_first=True, padding_value=0.0) | |
| unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0) | |
| unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device) | |
| for i, seq_len in enumerate(unified_item_seqlens): | |
| unified_attn_mask[i, :seq_len] = 1 | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for layer in self.layers: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| unified = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer), | |
| unified, | |
| unified_attn_mask, | |
| unified_freqs_cis, | |
| adaln_input, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| for layer in self.layers: | |
| unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input) | |
| unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input) | |
| unified = list(unified.unbind(dim=0)) | |
| x = self.unpatchify(unified, x_size, patch_size, f_patch_size) | |
| if self.sp_world_size > 1: | |
| x = self.all_gather(x, dim=1) | |
| x = torch.stack(x) | |
| return x, {} | |
| def from_pretrained( | |
| cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if "dict_mapping" in transformer_additional_kwargs.keys(): | |
| for key in transformer_additional_kwargs["dict_mapping"]: | |
| transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key] | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers import __version__ as diffusers_version | |
| if diffusers_version >= "0.33.0": | |
| from diffusers.models.model_loading_utils import \ | |
| load_model_dict_into_meta | |
| else: | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| print(model_files_safetensors) | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| filtered_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size(): | |
| filtered_state_dict[key] = state_dict[key] | |
| else: | |
| print(f"Skipping key '{key}' due to size mismatch or absence in model.") | |
| model_keys = set(model.state_dict().keys()) | |
| loaded_keys = set(filtered_state_dict.keys()) | |
| missing_keys = model_keys - loaded_keys | |
| def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None): | |
| initialized_dict = {} | |
| with torch.no_grad(): | |
| for key in missing_keys: | |
| param_shape = model_state_dict[key].shape | |
| param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype | |
| if "control" in key and key.replace("control_", "") in filtered_state_dict.keys(): | |
| initialized_dict[key] = filtered_state_dict[key.replace("control_", "")].clone() | |
| print(f"Initializing missing parameter '{key}' with model.state_dict().") | |
| elif "after_proj" in key or "before_proj" in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| print(f"Initializing missing parameter '{key}' with zero.") | |
| elif 'weight' in key: | |
| if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']): | |
| initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) | |
| elif 'embedding' in key or 'embed' in key: | |
| initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 | |
| elif 'head' in key or 'output' in key or 'proj_out' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif len(param_shape) >= 2: | |
| initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype) | |
| nn.init.xavier_uniform_(initialized_dict[key]) | |
| else: | |
| initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 | |
| elif 'bias' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif 'running_mean' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| elif 'running_var' in key: | |
| initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) | |
| elif 'num_batches_tracked' in key: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long) | |
| else: | |
| initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) | |
| return initialized_dict | |
| if missing_keys: | |
| print(f"Missing keys will be initialized: {sorted(missing_keys)}") | |
| initialized_params = initialize_missing_parameters( | |
| missing_keys, | |
| model.state_dict(), | |
| torch_dtype | |
| ) | |
| filtered_state_dict.update(initialized_params) | |
| if diffusers_version >= "0.33.0": | |
| # Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit: | |
| # https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785. | |
| load_model_dict_into_meta( | |
| model, | |
| filtered_state_dict, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| else: | |
| model._convert_deprecated_attention_blocks(filtered_state_dict) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| filtered_state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### All Parameters: {sum(params) / 1e6} M") | |
| params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for _model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(_model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| for key in model.state_dict(): | |
| if "control" in key and key.replace("control_", "") in state_dict.keys() and model.state_dict()[key].size() == state_dict[key.replace("control_", "")].size(): | |
| tmp_state_dict[key] = state_dict[key.replace("control_", "")].clone() | |
| print(f"Initializing missing parameter '{key}' with model.state_dict().") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m) | |
| params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### All Parameters: {sum(params) / 1e6} M") | |
| params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model |