Alexander Bagus commited on
Commit
ffc2074
·
1 Parent(s): 078f16b
Files changed (2) hide show
  1. app.py +5 -3
  2. utils/image_utils.py +8 -2
app.py CHANGED
@@ -6,7 +6,7 @@ from videox_fun.pipeline import ZImageControlPipeline
6
  from videox_fun.models import ZImageControlTransformer2DModel
7
  from transformers import AutoTokenizer, Qwen3ForCausalLM
8
  from diffusers import AutoencoderKL
9
- from utils.image_utils import get_image_latent, scale_image
10
  from utils.prompt_utils import polish_prompt
11
  # from controlnet_aux import HEDdetector, MLSDdetector, OpenposeDetector, CannyDetector, MidasDetector
12
  from controlnet_aux.processor import Processor
@@ -86,7 +86,7 @@ def inference(
86
  prompt,
87
  input_image,
88
  image_scale=1.0,
89
- control_mode='Canny'
90
  control_context_scale = 0.75,
91
  seed=42,
92
  randomize_seed=True,
@@ -114,7 +114,9 @@ def inference(
114
  else:
115
  processor = Processor('canny')
116
 
117
- control_image, width, height = scale_image(input_image, image_scale, 8)
 
 
118
  control_image = control_image.resize((512, 512))
119
 
120
  print("DEBUG: processor running")
 
6
  from videox_fun.models import ZImageControlTransformer2DModel
7
  from transformers import AutoTokenizer, Qwen3ForCausalLM
8
  from diffusers import AutoencoderKL
9
+ from utils.image_utils import get_image_latent, rescale_image
10
  from utils.prompt_utils import polish_prompt
11
  # from controlnet_aux import HEDdetector, MLSDdetector, OpenposeDetector, CannyDetector, MidasDetector
12
  from controlnet_aux.processor import Processor
 
86
  prompt,
87
  input_image,
88
  image_scale=1.0,
89
+ control_mode='Canny',
90
  control_context_scale = 0.75,
91
  seed=42,
92
  randomize_seed=True,
 
114
  else:
115
  processor = Processor('canny')
116
 
117
+
118
+
119
+ control_image, width, height = rescale_image(input_image, image_scale, 8)
120
  control_image = control_image.resize((512, 512))
121
 
122
  print("DEBUG: processor running")
utils/image_utils.py CHANGED
@@ -2,12 +2,18 @@ import torch
2
  from PIL import Image
3
  import numpy as np
4
 
5
- def scale_image(img, scale, nearest=32):
6
  w, h = img.size
7
  new_w = int(w * scale)
8
  new_h = int(h * scale)
9
 
10
- # Adjust to nearest multiple of 32
 
 
 
 
 
 
11
  new_w = (new_w // nearest) * nearest
12
  new_h = (new_h // nearest) * nearest
13
 
 
2
  from PIL import Image
3
  import numpy as np
4
 
5
+ def rescale_image(img, scale, nearest=32, max_size=1280):
6
  w, h = img.size
7
  new_w = int(w * scale)
8
  new_h = int(h * scale)
9
 
10
+ if new_w > max_size or new_h > max_size:
11
+ # Calculate new size keeping aspect ratio
12
+ scale = min(max_size / new_w, max_size / new_h)
13
+ new_w = int(new_w * scale)
14
+ new_w = int(new_w * scale)
15
+
16
+ # Adjust to nearest multiple
17
  new_w = (new_w // nearest) * nearest
18
  new_h = (new_h // nearest) * nearest
19