# Modified from https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/s2v/audio_encoder.py # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math import librosa import numpy as np import torch import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin from diffusers.loaders.single_file_model import FromOriginalModelMixin from diffusers.models.modeling_utils import ModelMixin from transformers import Wav2Vec2Model, Wav2Vec2Processor class FantasyTalkingAudioEncoder(ModelMixin, ConfigMixin, FromOriginalModelMixin): def __init__(self, pretrained_model_path="facebook/wav2vec2-base-960h", device='cpu'): super(FantasyTalkingAudioEncoder, self).__init__() # load pretrained model self.processor = Wav2Vec2Processor.from_pretrained(pretrained_model_path) self.model = Wav2Vec2Model.from_pretrained(pretrained_model_path) self.model = self.model.to(device) def extract_audio_feat(self, audio_path, num_frames = 81, fps = 16, sr = 16000): audio_input, sample_rate = librosa.load(audio_path, sr=sr) start_time = 0 end_time = num_frames / fps start_sample = int(start_time * sr) end_sample = int(end_time * sr) try: audio_segment = audio_input[start_sample:end_sample] except: audio_segment = audio_input input_values = self.processor( audio_segment, sampling_rate=sample_rate, return_tensors="pt" ).input_values.to(self.model.device, self.model.dtype) with torch.no_grad(): fea = self.model(input_values).last_hidden_state return fea def extract_audio_feat_without_file_load(self, audio_segment, sample_rate): input_values = self.processor( audio_segment, sampling_rate=sample_rate, return_tensors="pt" ).input_values.to(self.model.device, self.model.dtype) with torch.no_grad(): fea = self.model(input_values).last_hidden_state return fea