import torch import torch.cuda.amp as amp from typing import Optional import torch import torch.nn.functional as F from diffusers.models.attention import Attention from .fuser import (get_sequence_parallel_rank, get_sequence_parallel_world_size, get_sp_group, init_distributed_environment, initialize_model_parallel, xFuserLongContextAttention) class ZMultiGPUsSingleStreamAttnProcessor: """ Processor for Z-Image single stream attention that adapts the existing Attention class to match the behavior of the original Z-ImageAttention module. """ _attention_backend = None _parallel_config = None def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "ZSingleStreamAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[torch.Tensor] = None, ) -> torch.Tensor: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(-1, (attn.heads, -1)) key = key.unflatten(-1, (attn.heads, -1)) value = value.unflatten(-1, (attn.heads, -1)) # Apply Norms if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: with torch.amp.autocast("cuda", enabled=False): x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x * freqs_cis).flatten(3) return x_out.type_as(x_in) # todo if freqs_cis is not None: query = apply_rotary_emb(query, freqs_cis) key = apply_rotary_emb(key, freqs_cis) # Cast to correct dtype dtype = query.dtype query, key = query.to(dtype), key.to(dtype) # From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len] if attention_mask is not None and attention_mask.ndim == 2: attention_mask = attention_mask[:, None, None, :] # Compute joint attention hidden_states = xFuserLongContextAttention()( query, key, value, ) # Reshape back hidden_states = hidden_states.flatten(2, 3) hidden_states = hidden_states.to(dtype) output = attn.to_out[0](hidden_states) if len(attn.to_out) > 1: # dropout output = attn.to_out[1](output) return output