# Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_flux2.py # Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import inspect import json import os from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin from diffusers.models.attention_processor import Attention, AttentionProcessor from diffusers.models.embeddings import (TimestepEmbedding, Timesteps, apply_rotary_emb, get_1d_rotary_pos_embed) from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous from diffusers.utils import (USE_PEFT_BACKEND, is_torch_npu_available, is_torch_version, logging, scale_lora_layers, unscale_lora_layers) from ..dist import (Flux2MultiGPUsAttnProcessor2_0, get_sequence_parallel_rank, get_sequence_parallel_world_size, get_sp_group) from .attention_utils import attention logger = logging.get_logger(__name__) # pylint: disable=invalid-name def _get_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None): query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) encoder_query = encoder_key = encoder_value = None if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None: encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) return query, key, value, encoder_query, encoder_key, encoder_value def _get_qkv_projections(attn: "Flux2Attention", hidden_states, encoder_hidden_states=None): return _get_projections(attn, hidden_states, encoder_hidden_states) def apply_rotary_emb( x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], use_real: bool = True, use_real_unbind_dim: int = -1, sequence_dim: int = 2, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x (`torch.Tensor`): Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ if use_real: cos, sin = freqs_cis # [S, D] if sequence_dim == 2: cos = cos[None, None, :, :] sin = sin[None, None, :, :] elif sequence_dim == 1: cos = cos[None, :, None, :] sin = sin[None, :, None, :] else: raise ValueError(f"`sequence_dim={sequence_dim}` but should be 1 or 2.") cos, sin = cos.to(x.device), sin.to(x.device) if use_real_unbind_dim == -1: # Used for flux, cogvideox, hunyuan-dit x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, H, S, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) elif use_real_unbind_dim == -2: # Used for Stable Audio, OmniGen, CogView4 and Cosmos x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, H, S, D//2] x_rotated = torch.cat([-x_imag, x_real], dim=-1) else: raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out else: # used for lumina x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) return x_out.type_as(x) class Flux2SwiGLU(nn.Module): """ Flux 2 uses a SwiGLU-style activation in the transformer feedforward sub-blocks, but with the linear projection layer fused into the first linear layer of the FF sub-block. Thus, this module has no trainable parameters. """ def __init__(self): super().__init__() self.gate_fn = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(2, dim=-1) x = self.gate_fn(x1) * x2 return x class Flux2FeedForward(nn.Module): def __init__( self, dim: int, dim_out: Optional[int] = None, mult: float = 3.0, inner_dim: Optional[int] = None, bias: bool = False, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out or dim # Flux2SwiGLU will reduce the dimension by half self.linear_in = nn.Linear(dim, inner_dim * 2, bias=bias) self.act_fn = Flux2SwiGLU() self.linear_out = nn.Linear(inner_dim, dim_out, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.linear_in(x) x = self.act_fn(x) x = self.linear_out(x) return x class Flux2AttnProcessor: _attention_backend = None _parallel_config = None def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.") def __call__( self, attn: Union["Flux2Attention", "Flux2ParallelSelfAttention"], hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, text_seq_len: int = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Unified processor for both Flux2Attention and Flux2ParallelSelfAttention. Args: attn: Attention module (either Flux2Attention or Flux2ParallelSelfAttention) hidden_states: Input hidden states encoder_hidden_states: Optional encoder hidden states (only for Flux2Attention) attention_mask: Optional attention mask image_rotary_emb: Optional rotary embeddings Returns: For Flux2Attention with encoder_hidden_states: (hidden_states, encoder_hidden_states) For Flux2Attention without encoder_hidden_states: hidden_states For Flux2ParallelSelfAttention: hidden_states """ # Determine which type of attention we're processing is_parallel_self_attn = hasattr(attn, 'to_qkv_mlp_proj') and attn.to_qkv_mlp_proj is not None if is_parallel_self_attn: # ============================================ # Parallel Self-Attention Path (with MLP) # ============================================ # Parallel in (QKV + MLP in) projection hidden_states = attn.to_qkv_mlp_proj(hidden_states) qkv, mlp_hidden_states = torch.split( hidden_states, [3 * attn.inner_dim, attn.mlp_hidden_dim * attn.mlp_mult_factor], dim=-1 ) # Handle the attention logic query, key, value = qkv.chunk(3, dim=-1) else: # ============================================ # Standard Attention Path (possibly with encoder) # ============================================ query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections( attn, hidden_states, encoder_hidden_states ) # Common processing for query, key, value query = query.unflatten(-1, (attn.heads, -1)) key = key.unflatten(-1, (attn.heads, -1)) value = value.unflatten(-1, (attn.heads, -1)) query = attn.norm_q(query) key = attn.norm_k(key) # Handle encoder projections (only for standard attention) if not is_parallel_self_attn and attn.added_kv_proj_dim is not None: encoder_query = encoder_query.unflatten(-1, (attn.heads, -1)) encoder_key = encoder_key.unflatten(-1, (attn.heads, -1)) encoder_value = encoder_value.unflatten(-1, (attn.heads, -1)) encoder_query = attn.norm_added_q(encoder_query) encoder_key = attn.norm_added_k(encoder_key) query = torch.cat([encoder_query, query], dim=1) key = torch.cat([encoder_key, key], dim=1) value = torch.cat([encoder_value, value], dim=1) # Apply rotary embeddings if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1) key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1) # Perform attention hidden_states = attention( query, key, value, attn_mask=attention_mask, ) hidden_states = hidden_states.flatten(2, 3) hidden_states = hidden_states.to(query.dtype) if is_parallel_self_attn: # ============================================ # Parallel Self-Attention Output Path # ============================================ # Handle the feedforward (FF) logic mlp_hidden_states = attn.mlp_act_fn(mlp_hidden_states) # Concatenate and parallel output projection hidden_states = torch.cat([hidden_states, mlp_hidden_states], dim=-1) hidden_states = attn.to_out(hidden_states) return hidden_states else: # ============================================ # Standard Attention Output Path # ============================================ # Split encoder and latent hidden states if encoder was used if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = hidden_states.split_with_sizes( [encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1 ) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # Project output hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class Flux2Attention(torch.nn.Module): _default_processor_cls = Flux2AttnProcessor _available_processors = [Flux2AttnProcessor] def __init__( self, query_dim: int, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, added_kv_proj_dim: Optional[int] = None, added_proj_bias: Optional[bool] = True, out_bias: bool = True, eps: float = 1e-5, out_dim: int = None, elementwise_affine: bool = True, processor=None, ): super().__init__() self.head_dim = dim_head self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.query_dim = query_dim self.out_dim = out_dim if out_dim is not None else query_dim self.heads = out_dim // dim_head if out_dim is not None else heads self.use_bias = bias self.dropout = dropout self.added_kv_proj_dim = added_kv_proj_dim self.added_proj_bias = added_proj_bias self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias) # QK Norm self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) self.to_out = torch.nn.ModuleList([]) self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(torch.nn.Dropout(dropout)) if added_kv_proj_dim is not None: self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps) self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps) self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias) if processor is None: processor = self._default_processor_cls() self.set_processor(processor) def set_processor(self, processor: AttentionProcessor) -> None: """ Set the attention processor to use. Args: processor (`AttnProcessor`): The attention processor to use. """ # if current processor is in `self._modules` and if passed `processor` is not, we need to # pop `processor` from `self._modules` if ( hasattr(self, "processor") and isinstance(self.processor, torch.nn.Module) and not isinstance(processor, torch.nn.Module) ): logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") self._modules.pop("processor") self.processor = processor def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": """ Get the attention processor in use. Args: return_deprecated_lora (`bool`, *optional*, defaults to `False`): Set to `True` to return the deprecated LoRA attention processor. Returns: "AttentionProcessor": The attention processor in use. """ if not return_deprecated_lora: return self.processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters] if len(unused_kwargs) > 0: logger.warning( f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." ) kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters} return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs) class Flux2ParallelSelfAttention(torch.nn.Module): """ Flux 2 parallel self-attention for the Flux 2 single-stream transformer blocks. This implements a parallel transformer block, where the attention QKV projections are fused to the feedforward (FF) input projections, and the attention output projections are fused to the FF output projections. See the [ViT-22B paper](https://arxiv.org/abs/2302.05442) for a visual depiction of this type of transformer block. """ _default_processor_cls = Flux2AttnProcessor _available_processors = [Flux2AttnProcessor] # Does not support QKV fusion as the QKV projections are always fused _supports_qkv_fusion = False def __init__( self, query_dim: int, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, out_bias: bool = True, eps: float = 1e-5, out_dim: int = None, elementwise_affine: bool = True, mlp_ratio: float = 4.0, mlp_mult_factor: int = 2, processor=None, ): super().__init__() self.head_dim = dim_head self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.query_dim = query_dim self.out_dim = out_dim if out_dim is not None else query_dim self.heads = out_dim // dim_head if out_dim is not None else heads self.use_bias = bias self.dropout = dropout self.mlp_ratio = mlp_ratio self.mlp_hidden_dim = int(query_dim * self.mlp_ratio) self.mlp_mult_factor = mlp_mult_factor # Fused QKV projections + MLP input projection self.to_qkv_mlp_proj = torch.nn.Linear( self.query_dim, self.inner_dim * 3 + self.mlp_hidden_dim * self.mlp_mult_factor, bias=bias ) self.mlp_act_fn = Flux2SwiGLU() # QK Norm self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) # Fused attention output projection + MLP output projection self.to_out = torch.nn.Linear(self.inner_dim + self.mlp_hidden_dim, self.out_dim, bias=out_bias) if processor is None: processor = self._default_processor_cls() self.set_processor(processor) def set_processor(self, processor: AttentionProcessor) -> None: """ Set the attention processor to use. Args: processor (`AttnProcessor`): The attention processor to use. """ # if current processor is in `self._modules` and if passed `processor` is not, we need to # pop `processor` from `self._modules` if ( hasattr(self, "processor") and isinstance(self.processor, torch.nn.Module) and not isinstance(processor, torch.nn.Module) ): logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") self._modules.pop("processor") self.processor = processor def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": """ Get the attention processor in use. Args: return_deprecated_lora (`bool`, *optional*, defaults to `False`): Set to `True` to return the deprecated LoRA attention processor. Returns: "AttentionProcessor": The attention processor in use. """ if not return_deprecated_lora: return self.processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters] if len(unused_kwargs) > 0: logger.warning( f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." ) kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters} return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs) class Flux2SingleTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 3.0, eps: float = 1e-6, bias: bool = False, ): super().__init__() self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) # Note that the MLP in/out linear layers are fused with the attention QKV/out projections, respectively; this # is often called a "parallel" transformer block. See the [ViT-22B paper](https://arxiv.org/abs/2302.05442) # for a visual depiction of this type of transformer block. self.attn = Flux2ParallelSelfAttention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=bias, out_bias=bias, eps=eps, mlp_ratio=mlp_ratio, mlp_mult_factor=2, processor=Flux2AttnProcessor(), ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor], temb_mod_params: Tuple[torch.Tensor, torch.Tensor, torch.Tensor], image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # If encoder_hidden_states is None, hidden_states is assumed to have encoder_hidden_states already # concatenated if encoder_hidden_states is not None: text_seq_len = encoder_hidden_states.shape[1] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) mod_shift, mod_scale, mod_gate = temb_mod_params norm_hidden_states = self.norm(hidden_states) norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift joint_attention_kwargs = joint_attention_kwargs or {} attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, text_seq_len=text_seq_len, **joint_attention_kwargs, ) hidden_states = hidden_states + mod_gate * attn_output if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:] return encoder_hidden_states, hidden_states class Flux2TransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 3.0, eps: float = 1e-6, bias: bool = False, ): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) self.norm1_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) self.attn = Flux2Attention( query_dim=dim, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=bias, added_proj_bias=bias, out_bias=bias, eps=eps, processor=Flux2AttnProcessor(), ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) self.ff = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias) self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) self.ff_context = Flux2FeedForward(dim=dim, dim_out=dim, mult=mlp_ratio, bias=bias) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb_mod_params_img: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...], temb_mod_params_txt: Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...], image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: joint_attention_kwargs = joint_attention_kwargs or {} # Modulation parameters shape: [1, 1, self.dim] (shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img (c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt # Img stream norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = (1 + scale_msa) * norm_hidden_states + shift_msa # Conditioning txt stream norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) norm_encoder_hidden_states = (1 + c_scale_msa) * norm_encoder_hidden_states + c_shift_msa # Attention on concatenated img + txt stream attention_outputs = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) attn_output, context_attn_output = attention_outputs # Process attention outputs for the image stream (`hidden_states`). attn_output = gate_msa * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + gate_mlp * ff_output # Process attention outputs for the text stream (`encoder_hidden_states`). context_attn_output = c_gate_msa * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states class Flux2PosEmbed(nn.Module): # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11 def __init__(self, theta: int, axes_dim: List[int]): super().__init__() self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: # Expected ids shape: [S, len(self.axes_dim)] cos_out = [] sin_out = [] pos = ids.float() is_mps = ids.device.type == "mps" is_npu = ids.device.type == "npu" freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64 # Unlike Flux 1, loop over len(self.axes_dim) rather than ids.shape[-1] for i in range(len(self.axes_dim)): cos, sin = get_1d_rotary_pos_embed( self.axes_dim[i], pos[..., i], theta=self.theta, repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype, ) cos_out.append(cos) sin_out.append(sin) freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) return freqs_cos, freqs_sin class Flux2TimestepGuidanceEmbeddings(nn.Module): def __init__(self, in_channels: int = 256, embedding_dim: int = 6144, bias: bool = False): super().__init__() self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding( in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias ) self.guidance_embedder = TimestepEmbedding( in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias ) def forward(self, timestep: torch.Tensor, guidance: torch.Tensor) -> torch.Tensor: timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(timestep.dtype)) # (N, D) guidance_proj = self.time_proj(guidance) guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype)) # (N, D) time_guidance_emb = timesteps_emb + guidance_emb return time_guidance_emb class Flux2Modulation(nn.Module): def __init__(self, dim: int, mod_param_sets: int = 2, bias: bool = False): super().__init__() self.mod_param_sets = mod_param_sets self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias) self.act_fn = nn.SiLU() def forward(self, temb: torch.Tensor) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]: mod = self.act_fn(temb) mod = self.linear(mod) if mod.ndim == 2: mod = mod.unsqueeze(1) mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1) # Return tuple of 3-tuples of modulation params shift/scale/gate return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets)) class Flux2Transformer2DModel( ModelMixin, ConfigMixin, FromOriginalModelMixin, ): """ The Transformer model introduced in Flux 2. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Args: patch_size (`int`, defaults to `1`): Patch size to turn the input data into small patches. in_channels (`int`, defaults to `128`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `None`): The number of channels in the output. If not specified, it defaults to `in_channels`. num_layers (`int`, defaults to `8`): The number of layers of dual stream DiT blocks to use. num_single_layers (`int`, defaults to `48`): The number of layers of single stream DiT blocks to use. attention_head_dim (`int`, defaults to `128`): The number of dimensions to use for each attention head. num_attention_heads (`int`, defaults to `48`): The number of attention heads to use. joint_attention_dim (`int`, defaults to `15360`): The number of dimensions to use for the joint attention (embedding/channel dimension of `encoder_hidden_states`). pooled_projection_dim (`int`, defaults to `768`): The number of dimensions to use for the pooled projection. guidance_embeds (`bool`, defaults to `True`): Whether to use guidance embeddings for guidance-distilled variant of the model. axes_dims_rope (`Tuple[int]`, defaults to `(32, 32, 32, 32)`): The dimensions to use for the rotary positional embeddings. """ _supports_gradient_checkpointing = True # _no_split_modules = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"] # _skip_layerwise_casting_patterns = ["pos_embed", "norm"] # _repeated_blocks = ["Flux2TransformerBlock", "Flux2SingleTransformerBlock"] @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 128, out_channels: Optional[int] = None, num_layers: int = 8, num_single_layers: int = 48, attention_head_dim: int = 128, num_attention_heads: int = 48, joint_attention_dim: int = 15360, timestep_guidance_channels: int = 256, mlp_ratio: float = 3.0, axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32), rope_theta: int = 2000, eps: float = 1e-6, ): super().__init__() self.out_channels = out_channels or in_channels self.inner_dim = num_attention_heads * attention_head_dim # 1. Sinusoidal positional embedding for RoPE on image and text tokens self.pos_embed = Flux2PosEmbed(theta=rope_theta, axes_dim=axes_dims_rope) # 2. Combined timestep + guidance embedding self.time_guidance_embed = Flux2TimestepGuidanceEmbeddings( in_channels=timestep_guidance_channels, embedding_dim=self.inner_dim, bias=False ) # 3. Modulation (double stream and single stream blocks share modulation parameters, resp.) # Two sets of shift/scale/gate modulation parameters for the double stream attn and FF sub-blocks self.double_stream_modulation_img = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False) self.double_stream_modulation_txt = Flux2Modulation(self.inner_dim, mod_param_sets=2, bias=False) # Only one set of modulation parameters as the attn and FF sub-blocks are run in parallel for single stream self.single_stream_modulation = Flux2Modulation(self.inner_dim, mod_param_sets=1, bias=False) # 4. Input projections self.x_embedder = nn.Linear(in_channels, self.inner_dim, bias=False) self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim, bias=False) # 5. Double Stream Transformer Blocks self.transformer_blocks = nn.ModuleList( [ Flux2TransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_ratio=mlp_ratio, eps=eps, bias=False, ) for _ in range(num_layers) ] ) # 6. Single Stream Transformer Blocks self.single_transformer_blocks = nn.ModuleList( [ Flux2SingleTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_ratio=mlp_ratio, eps=eps, bias=False, ) for _ in range(num_single_layers) ] ) # 7. Output layers self.norm_out = AdaLayerNormContinuous( self.inner_dim, self.inner_dim, elementwise_affine=False, eps=eps, bias=False ) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False) self.gradient_checkpointing = False self.sp_world_size = 1 self.sp_world_rank = 0 def _set_gradient_checkpointing(self, *args, **kwargs): if "value" in kwargs: self.gradient_checkpointing = kwargs["value"] elif "enable" in kwargs: self.gradient_checkpointing = kwargs["enable"] else: raise ValueError("Invalid set gradient checkpointing") def enable_multi_gpus_inference(self,): self.sp_world_size = get_sequence_parallel_world_size() self.sp_world_rank = get_sequence_parallel_rank() self.all_gather = get_sp_group().all_gather self.set_attn_processor(Flux2MultiGPUsAttnProcessor2_0()) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.Tensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): Input `hidden_states`. encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 0. Handle input arguments if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 num_txt_tokens = encoder_hidden_states.shape[1] # 1. Calculate timestep embedding and modulation parameters timestep = timestep.to(hidden_states.dtype) * 1000 guidance = guidance.to(hidden_states.dtype) * 1000 temb = self.time_guidance_embed(timestep, guidance) double_stream_mod_img = self.double_stream_modulation_img(temb) double_stream_mod_txt = self.double_stream_modulation_txt(temb) single_stream_mod = self.single_stream_modulation(temb)[0] # 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states) hidden_states = self.x_embedder(hidden_states) encoder_hidden_states = self.context_embedder(encoder_hidden_states) # 3. Calculate RoPE embeddings from image and text tokens # NOTE: the below logic means that we can't support batched inference with images of different resolutions or # text prompts of differents lengths. Is this a use case we want to support? if img_ids.ndim == 3: img_ids = img_ids[0] if txt_ids.ndim == 3: txt_ids = txt_ids[0] if is_torch_npu_available(): freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu()) image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu()) freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu()) text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu()) else: image_rotary_emb = self.pos_embed(img_ids) text_rotary_emb = self.pos_embed(txt_ids) concat_rotary_emb = ( torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0), torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0), ) # Context Parallel if self.sp_world_size > 1: hidden_states = torch.chunk(hidden_states, self.sp_world_size, dim=1)[self.sp_world_rank] if concat_rotary_emb is not None: txt_rotary_emb = ( concat_rotary_emb[0][:encoder_hidden_states.shape[1]], concat_rotary_emb[1][:encoder_hidden_states.shape[1]] ) concat_rotary_emb = ( torch.chunk(concat_rotary_emb[0][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank], torch.chunk(concat_rotary_emb[1][encoder_hidden_states.shape[1]:], self.sp_world_size, dim=0)[self.sp_world_rank], ) concat_rotary_emb = [torch.cat([_txt_rotary_emb, _image_rotary_emb], dim=0) \ for _txt_rotary_emb, _image_rotary_emb in zip(txt_rotary_emb, concat_rotary_emb)] # 4. Double Stream Transformer Blocks for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, double_stream_mod_img, double_stream_mod_txt, concat_rotary_emb, joint_attention_kwargs, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb_mod_params_img=double_stream_mod_img, temb_mod_params_txt=double_stream_mod_txt, image_rotary_emb=concat_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # 5. Single Stream Transformer Blocks for index_block, block in enumerate(self.single_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, single_stream_mod, concat_rotary_emb, joint_attention_kwargs, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb_mod_params=single_stream_mod, image_rotary_emb=concat_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # 6. Output layers hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if self.sp_world_size > 1: output = self.all_gather(output, dim=1) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) @classmethod def from_pretrained( cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 ): if subfolder is not None: pretrained_model_path = os.path.join(pretrained_model_path, subfolder) print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") config_file = os.path.join(pretrained_model_path, 'config.json') if not os.path.isfile(config_file): raise RuntimeError(f"{config_file} does not exist") with open(config_file, "r") as f: config = json.load(f) from diffusers.utils import WEIGHTS_NAME model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) model_file_safetensors = model_file.replace(".bin", ".safetensors") if "dict_mapping" in transformer_additional_kwargs.keys(): for key in transformer_additional_kwargs["dict_mapping"]: transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key] if low_cpu_mem_usage: try: import re from diffusers import __version__ as diffusers_version if diffusers_version >= "0.33.0": from diffusers.models.model_loading_utils import \ load_model_dict_into_meta else: from diffusers.models.modeling_utils import \ load_model_dict_into_meta from diffusers.utils import is_accelerate_available if is_accelerate_available(): import accelerate # Instantiate model with empty weights with accelerate.init_empty_weights(): model = cls.from_config(config, **transformer_additional_kwargs) param_device = "cpu" if os.path.exists(model_file): state_dict = torch.load(model_file, map_location="cpu") elif os.path.exists(model_file_safetensors): from safetensors.torch import load_file, safe_open state_dict = load_file(model_file_safetensors) else: from safetensors.torch import load_file, safe_open model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) state_dict = {} print(model_files_safetensors) for _model_file_safetensors in model_files_safetensors: _state_dict = load_file(_model_file_safetensors) for key in _state_dict: state_dict[key] = _state_dict[key] filtered_state_dict = {} for key in state_dict: if key in model.state_dict() and model.state_dict()[key].size() == state_dict[key].size(): filtered_state_dict[key] = state_dict[key] else: print(f"Skipping key '{key}' due to size mismatch or absence in model.") model_keys = set(model.state_dict().keys()) loaded_keys = set(filtered_state_dict.keys()) missing_keys = model_keys - loaded_keys def initialize_missing_parameters(missing_keys, model_state_dict, torch_dtype=None): initialized_dict = {} with torch.no_grad(): for key in missing_keys: param_shape = model_state_dict[key].shape param_dtype = torch_dtype if torch_dtype is not None else model_state_dict[key].dtype if 'weight' in key: if any(norm_type in key for norm_type in ['norm', 'ln_', 'layer_norm', 'group_norm', 'batch_norm']): initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) elif 'embedding' in key or 'embed' in key: initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 elif 'head' in key or 'output' in key or 'proj_out' in key: initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) elif len(param_shape) >= 2: initialized_dict[key] = torch.empty(param_shape, dtype=param_dtype) nn.init.xavier_uniform_(initialized_dict[key]) else: initialized_dict[key] = torch.randn(param_shape, dtype=param_dtype) * 0.02 elif 'bias' in key: initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) elif 'running_mean' in key: initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) elif 'running_var' in key: initialized_dict[key] = torch.ones(param_shape, dtype=param_dtype) elif 'num_batches_tracked' in key: initialized_dict[key] = torch.zeros(param_shape, dtype=torch.long) else: initialized_dict[key] = torch.zeros(param_shape, dtype=param_dtype) return initialized_dict if missing_keys: print(f"Missing keys will be initialized: {sorted(missing_keys)}") initialized_params = initialize_missing_parameters( missing_keys, model.state_dict(), torch_dtype ) filtered_state_dict.update(initialized_params) if diffusers_version >= "0.33.0": # Diffusers has refactored `load_model_dict_into_meta` since version 0.33.0 in this commit: # https://github.com/huggingface/diffusers/commit/f5929e03060d56063ff34b25a8308833bec7c785. load_model_dict_into_meta( model, filtered_state_dict, dtype=torch_dtype, model_name_or_path=pretrained_model_path, ) else: model._convert_deprecated_attention_blocks(filtered_state_dict) unexpected_keys = load_model_dict_into_meta( model, filtered_state_dict, device=param_device, dtype=torch_dtype, model_name_or_path=pretrained_model_path, ) if cls._keys_to_ignore_on_load_unexpected is not None: for pat in cls._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: print( f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" ) return model except Exception as e: print( f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." ) model = cls.from_config(config, **transformer_additional_kwargs) if os.path.exists(model_file): state_dict = torch.load(model_file, map_location="cpu") elif os.path.exists(model_file_safetensors): from safetensors.torch import load_file, safe_open state_dict = load_file(model_file_safetensors) else: from safetensors.torch import load_file, safe_open model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) state_dict = {} for _model_file_safetensors in model_files_safetensors: _state_dict = load_file(_model_file_safetensors) for key in _state_dict: state_dict[key] = _state_dict[key] tmp_state_dict = {} for key in state_dict: if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): tmp_state_dict[key] = state_dict[key] else: print(key, "Size don't match, skip") state_dict = tmp_state_dict m, u = model.load_state_dict(state_dict, strict=False) print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") print(m) params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] print(f"### All Parameters: {sum(params) / 1e6} M") params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] print(f"### attn1 Parameters: {sum(params) / 1e6} M") model = model.to(torch_dtype) return model