import os import sys import numpy as np import torch from diffusers import FlowMatchEulerDiscreteScheduler from omegaconf import OmegaConf from PIL import Image current_file_path = os.path.abspath(__file__) project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))] for project_root in project_roots: sys.path.insert(0, project_root) if project_root not in sys.path else None from videox_fun.dist import set_multi_gpus_devices, shard_model from videox_fun.models import (AutoencoderKL, AutoTokenizer, Qwen3ForCausalLM, ZImageControlTransformer2DModel) from videox_fun.models.cache_utils import get_teacache_coefficients from videox_fun.pipeline import ZImageControlPipeline from videox_fun.utils.fm_solvers import FlowDPMSolverMultistepScheduler from videox_fun.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from videox_fun.utils.fp8_optimization import (convert_model_weight_to_float8, convert_weight_dtype_wrapper) from videox_fun.utils.lora_utils import merge_lora, unmerge_lora from videox_fun.utils.utils import (filter_kwargs, get_image_to_video_latent, get_image_latent, get_image, get_video_to_video_latent, save_videos_grid) # GPU memory mode, which can be chosen in [model_full_load, model_full_load_and_qfloat8, model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload]. # model_full_load means that the entire model will be moved to the GPU. # # model_full_load_and_qfloat8 means that the entire model will be moved to the GPU, # and the transformer model has been quantized to float8, which can save more GPU memory. # # model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory. # # model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, # and the transformer model has been quantized to float8, which can save more GPU memory. # # sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, # resulting in slower speeds but saving a large amount of GPU memory. GPU_memory_mode = "model_cpu_offload" # Multi GPUs config # Please ensure that the product of ulysses_degree and ring_degree equals the number of GPUs used. # For example, if you are using 8 GPUs, you can set ulysses_degree = 2 and ring_degree = 4. # If you are using 1 GPU, you can set ulysses_degree = 1 and ring_degree = 1. ulysses_degree = 1 ring_degree = 1 # Use FSDP to save more GPU memory in multi gpus. fsdp_dit = False fsdp_text_encoder = False # Compile will give a speedup in fixed resolution and need a little GPU memory. # The compile_dit is not compatible with the fsdp_dit and sequential_cpu_offload. compile_dit = False # Config and model path config_path = "config/z_image/z_image_control.yaml" # model path model_name = "models/Diffusion_Transformer/Z-Image-Turbo/" # Choose the sampler in "Flow", "Flow_Unipc", "Flow_DPM++" sampler_name = "Flow" # Load pretrained model if need transformer_path = "models/Personalized_Model/Z-Image-Turbo-Fun-Controlnet-Union.safetensors" vae_path = None lora_path = None # Other params sample_size = [1728, 992] # Use torch.float16 if GPU does not support torch.bfloat16 # ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16 weight_dtype = torch.bfloat16 control_image = "asset/pose.jpg" control_context_scale = 0.75 # 使用更长的neg prompt如"模糊,突变,变形,失真,画面暗,文本字幕,画面固定,连环画,漫画,线稿,没有主体。",可以增加稳定性 # 在neg prompt中添加"安静,固定"等词语可以增加动态性。 prompt = "一位年轻女子站在阳光明媚的海岸线上,白裙在轻拂的海风中微微飘动。她拥有一头鲜艳的紫色长发,在风中轻盈舞动,发间系着一个精致的黑色蝴蝶结,与身后柔和的蔚蓝天空形成鲜明对比。她面容清秀,眉目精致,透着一股甜美的青春气息;神情柔和,略带羞涩,目光静静地凝望着远方的地平线,双手自然交叠于身前,仿佛沉浸在思绪之中。在她身后,是辽阔无垠、波光粼粼的大海,阳光洒在海面上,映出温暖的金色光晕。" negative_prompt = " " guidance_scale = 0.00 seed = 43 num_inference_steps = 9 lora_weight = 0.55 save_path = "samples/z-image-t2i-control" device = set_multi_gpus_devices(ulysses_degree, ring_degree) config = OmegaConf.load(config_path) transformer = ZImageControlTransformer2DModel.from_pretrained( model_name, subfolder="transformer", low_cpu_mem_usage=True, torch_dtype=weight_dtype, transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']), ).to(weight_dtype) if transformer_path is not None: print(f"From checkpoint: {transformer_path}") if transformer_path.endswith("safetensors"): from safetensors.torch import load_file, safe_open state_dict = load_file(transformer_path) else: state_dict = torch.load(transformer_path, map_location="cpu") state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict m, u = transformer.load_state_dict(state_dict, strict=False) print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") # Get Vae vae = AutoencoderKL.from_pretrained( model_name, subfolder="vae" ).to(weight_dtype) if vae_path is not None: print(f"From checkpoint: {vae_path}") if vae_path.endswith("safetensors"): from safetensors.torch import load_file, safe_open state_dict = load_file(vae_path) else: state_dict = torch.load(vae_path, map_location="cpu") state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict m, u = vae.load_state_dict(state_dict, strict=False) print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") # Get tokenizer and text_encoder tokenizer = AutoTokenizer.from_pretrained( model_name, subfolder="tokenizer" ) text_encoder = Qwen3ForCausalLM.from_pretrained( model_name, subfolder="text_encoder", torch_dtype=weight_dtype, low_cpu_mem_usage=True, ) # Get Scheduler Chosen_Scheduler = scheduler_dict = { "Flow": FlowMatchEulerDiscreteScheduler, "Flow_Unipc": FlowUniPCMultistepScheduler, "Flow_DPM++": FlowDPMSolverMultistepScheduler, }[sampler_name] scheduler = Chosen_Scheduler.from_pretrained( model_name, subfolder="scheduler" ) pipeline = ZImageControlPipeline( vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, ) if ulysses_degree > 1 or ring_degree > 1: from functools import partial transformer.enable_multi_gpus_inference() if fsdp_dit: shard_fn = partial(shard_model, device_id=device, param_dtype=weight_dtype, module_to_wrapper=list(transformer.transformer_blocks) + list(transformer.single_transformer_blocks)) pipeline.transformer = shard_fn(pipeline.transformer) print("Add FSDP DIT") if fsdp_text_encoder: shard_fn = partial(shard_model, device_id=device, param_dtype=weight_dtype, module_to_wrapper=text_encoder.language_model.layers, ignored_modules=[text_encoder.language_model.embed_tokens], transformer_layer_cls_to_wrap=["MistralDecoderLayer", "PixtralTransformer"]) text_encoder = shard_fn(text_encoder) print("Add FSDP TEXT ENCODER") if compile_dit: for i in range(len(pipeline.transformer.transformer_blocks)): pipeline.transformer.transformer_blocks[i] = torch.compile(pipeline.transformer.transformer_blocks[i]) print("Add Compile") if GPU_memory_mode == "sequential_cpu_offload": pipeline.enable_sequential_cpu_offload(device=device) elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": convert_model_weight_to_float8(transformer, exclude_module_name=["img_in", "txt_in", "timestep"], device=device) convert_weight_dtype_wrapper(transformer, weight_dtype) pipeline.enable_model_cpu_offload(device=device) elif GPU_memory_mode == "model_cpu_offload": pipeline.enable_model_cpu_offload(device=device) elif GPU_memory_mode == "model_full_load_and_qfloat8": convert_model_weight_to_float8(transformer, exclude_module_name=["img_in", "txt_in", "timestep"], device=device) convert_weight_dtype_wrapper(transformer, weight_dtype) pipeline.to(device=device) else: pipeline.to(device=device) generator = torch.Generator(device=device).manual_seed(seed) if lora_path is not None: pipeline = merge_lora(pipeline, lora_path, lora_weight, device=device, dtype=weight_dtype) with torch.no_grad(): if control_image is not None: control_image = get_image_latent(control_image, sample_size=sample_size)[:, :, 0] sample = pipeline( prompt = prompt, negative_prompt = negative_prompt, height = sample_size[0], width = sample_size[1], generator = generator, guidance_scale = guidance_scale, control_image = control_image, num_inference_steps = num_inference_steps, control_context_scale = control_context_scale, ).images if lora_path is not None: pipeline = unmerge_lora(pipeline, lora_path, lora_weight, device=device, dtype=weight_dtype) def save_results(): if not os.path.exists(save_path): os.makedirs(save_path, exist_ok=True) index = len([path for path in os.listdir(save_path)]) + 1 prefix = str(index).zfill(8) video_path = os.path.join(save_path, prefix + ".png") image = sample[0] image.save(video_path) if ulysses_degree * ring_degree > 1: import torch.distributed as dist if dist.get_rank() == 0: save_results() else: save_results()