from typing import Optional import torch import torch.nn.functional as F from diffusers.models.attention import Attention from diffusers.models.embeddings import apply_rotary_emb from .fuser import (get_sequence_parallel_rank, get_sequence_parallel_world_size, get_sp_group, init_distributed_environment, initialize_model_parallel, xFuserLongContextAttention) class CogVideoXMultiGPUsAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) img_q = query[:, :, text_seq_length:].transpose(1, 2) txt_q = query[:, :, :text_seq_length].transpose(1, 2) img_k = key[:, :, text_seq_length:].transpose(1, 2) txt_k = key[:, :, :text_seq_length].transpose(1, 2) img_v = value[:, :, text_seq_length:].transpose(1, 2) txt_v = value[:, :, :text_seq_length].transpose(1, 2) hidden_states = xFuserLongContextAttention()( None, img_q, img_k, img_v, dropout_p=0.0, causal=False, joint_tensor_query=txt_q, joint_tensor_key=txt_k, joint_tensor_value=txt_v, joint_strategy='front', ) hidden_states = hidden_states.flatten(2, 3) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states