# Import necessary libraries import numpy as np import joblib # For loading the serialized model import pandas as pd # For data manipulation from flask import Flask, request, jsonify # For creating the Flask API from pathlib import Path # For using a robust, absolute path # Define the base directory of the script BASE_DIR = Path(__file__).resolve().parent # Define the full path to your model file MODEL_PATH = BASE_DIR / "xgb_tuned.joblib" # Initialize Flask application superkart_api = Flask("SuperKart Sales Predictor") # Load the trained machine learning model model = joblib.load(MODEL_PATH) # Define a route for the home page (GET request) @superkart_api.get('/') def home(): """ This function handles GET requests to the root URL ('/') of the API. It returns a simple welcome message. """ return "Welcome to the SuperKart Sales Predictor API !" # Define an endpoint to predict for a single observation @superkart_api.post('/v1/predict') def predict_sales(): """ This function handles POST requests to the '/v1/predict' endpoint. It expects a JSON payload containing property details and returns the predicted rental price as a JSON response. """ # Get JSON data from the request data = request.get_json() # Extract relevant customer features from the input data. The order of the column names matters. sample = { 'Product_Weight': data['Product_Weight'], 'Product_MRP': data['Product_MRP'], 'Product_Allocated_Area': data['Product_Allocated_Area'], 'Product_Sugar_Content': data['Product_Sugar_Content'], 'Store_Size': data['Store_Size'], 'Store_Location_City_Type': data['Store_Location_City_Type'], 'Store_Type': data['Store_Type'], 'Store_Age_Years': data['Store_Age_Years'], 'Product_Id_prefix': data['Product_Id_prefix'], 'Product_FD_perishable': data['Product_FD_perishable'], } # Convert the extracted data into a DataFrame input_data = pd.DataFrame([sample]) # Make a store sales prediction using the trained model prediction = model.predict(input_data).tolist()[0] # Return the prediction as a JSON response return jsonify({'Sales': prediction}) # Define an endpoint for batch prediction (POST request) @superkart_api.post('/v1/batch') def predict_sales_batch(): """ This function handles POST requests to the '/v1/batch' endpoint. It expects a CSV file containing property details for multiple properties and returns the predicted rental prices as a dictionary in the JSON response. """ # Get the uploaded CSV file from the request file = request.files['file'] # Read the CSV file into a Pandas DataFrame input_data = pd.read_csv(file) # Make predictions for all properties in the DataFrame predicted_sales = model.predict(input_data).tolist() # Create a dictionary of predictions with property IDs as keys product_ids = input_data['Product_Id'].tolist() output_dict = dict(zip(product_ids, predicted_sales)) # Return the predictions dictionary as a JSON response return output_dict # Run the Flask app in debug mode if __name__ == '__main__': superkart_api.run(debug=True)