Spaces:
Runtime error
Runtime error
Commit
Β·
66700ad
1
Parent(s):
739c6cd
update app.py
Browse files
app.py
CHANGED
|
@@ -7,9 +7,8 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
| 7 |
|
| 8 |
st.markdown("# Hello, friend!")
|
| 9 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
| 10 |
-
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
| 11 |
|
| 12 |
-
st.write("Loading tokenizer and dict")
|
| 13 |
model_name_global = "allenai/scibert_scivocab_uncased"
|
| 14 |
tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 15 |
with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
|
@@ -18,32 +17,7 @@ with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
|
| 18 |
with st.form(key="my_form"):
|
| 19 |
st.markdown("### π Do you want a little magic? ")
|
| 20 |
st.markdown(" Write your article title and abstract to textboxes bellow and I'll gues topic of your paper! ")
|
| 21 |
-
|
| 22 |
-
ce, c2, c3 = st.columns([0.07, 5, 0.07])
|
| 23 |
-
# with c1:
|
| 24 |
-
# ModelType = st.radio(
|
| 25 |
-
# "Choose your model",
|
| 26 |
-
# ["DistilBERT (Default)", "Flair"],
|
| 27 |
-
# help="At present, you can choose between 2 models (Flair or DistilBERT) to embed your text. More to come!",
|
| 28 |
-
# )
|
| 29 |
-
#
|
| 30 |
-
# if ModelType == "Default (DistilBERT)":
|
| 31 |
-
# # kw_model = KeyBERT(model=roberta)
|
| 32 |
-
#
|
| 33 |
-
# @st.cache(allow_output_mutation=True)
|
| 34 |
-
# def load_model():
|
| 35 |
-
# return KeyBERT(model=roberta)
|
| 36 |
-
#
|
| 37 |
-
#
|
| 38 |
-
# kw_model = load_model()
|
| 39 |
-
#
|
| 40 |
-
# else:
|
| 41 |
-
# @st.cache(allow_output_mutation=True)
|
| 42 |
-
# def load_model():
|
| 43 |
-
# return KeyBERT("distilbert-base-nli-mean-tokens")
|
| 44 |
-
#
|
| 45 |
-
#
|
| 46 |
-
# kw_model = load_model()
|
| 47 |
|
| 48 |
with c2:
|
| 49 |
doc_title = st.text_area(
|
|
@@ -115,7 +89,7 @@ title = doc_title
|
|
| 115 |
abstract = doc_abstract
|
| 116 |
tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 117 |
|
| 118 |
-
predicts = make_predict(
|
| 119 |
|
| 120 |
st.markdown("## π Yor article probably about: ")
|
| 121 |
st.header("")
|
|
|
|
| 7 |
|
| 8 |
st.markdown("# Hello, friend!")
|
| 9 |
st.markdown(" This magic application going to help you with understanding of science paper topic! Cool? Yeah! ")
|
|
|
|
| 10 |
|
| 11 |
+
# st.write("Loading tokenizer and dict")
|
| 12 |
model_name_global = "allenai/scibert_scivocab_uncased"
|
| 13 |
tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
|
| 14 |
with open('./models/scibert/decode_dict.pkl', 'rb') as f:
|
|
|
|
| 17 |
with st.form(key="my_form"):
|
| 18 |
st.markdown("### π Do you want a little magic? ")
|
| 19 |
st.markdown(" Write your article title and abstract to textboxes bellow and I'll gues topic of your paper! ")
|
| 20 |
+
ce, c2, c3 = st.columns([0.07, 6, 0.07])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with c2:
|
| 23 |
doc_title = st.text_area(
|
|
|
|
| 89 |
abstract = doc_abstract
|
| 90 |
tokens = tokenizer_(title + abstract, return_tensors="pt")
|
| 91 |
|
| 92 |
+
predicts = make_predict(tokens, decode_dict)
|
| 93 |
|
| 94 |
st.markdown("## π Yor article probably about: ")
|
| 95 |
st.header("")
|