Spaces:
Running
Running
| ```python | |
| from fastapi import APIRouter, UploadFile, File, HTTPException | |
| from fastapi.responses import JSONResponse | |
| from pydantic import BaseModel | |
| from typing import Optional, List | |
| from datetime import datetime | |
| import uuid | |
| from .models_registry import ModelsRegistry | |
| from .signal_engine import SignalEngine | |
| router = APIRouter() | |
| # Initialize models and engine | |
| models = ModelsRegistry() | |
| engine = SignalEngine(models) | |
| class MarketRequest(BaseModel): | |
| pair: str | |
| timeframe: str | |
| exchange: Optional[str] = "binance" | |
| class SignalResponse(BaseModel): | |
| direction: str # "LONG", "SHORT", or "NEUTRAL" | |
| entry_zone: List[float] | |
| stop_loss: float | |
| take_profit_levels: List[float] | |
| timeframe_inferred: str | |
| confidence: float # 0-100 | |
| explanation: str | |
| signal_id: str | |
| timestamp: datetime | |
| class WebhookTestRequest(BaseModel): | |
| webhook_url: Optional[str] | |
| signal: SignalResponse | |
| async def analyze_screenshot(file: UploadFile = File(...)): | |
| try: | |
| # Generate a unique ID for this signal | |
| signal_id = str(uuid.uuid4()) | |
| # In a real implementation, we would: | |
| # 1. Process the image with vision models | |
| # 2. Extract text with OCR if needed | |
| # 3. Analyze with LLM | |
| # For now, return a mock response | |
| return SignalResponse( | |
| direction="LONG", | |
| entry_zone=[42000, 42500], | |
| stop_loss=41500, | |
| take_profit_levels=[43500, 44500], | |
| timeframe_inferred="1h", | |
| confidence=75.5, | |
| explanation="The chart shows a bullish breakout from a descending wedge pattern with increasing volume. Key support at 41,500 and first target at 43,500.", | |
| signal_id=signal_id, | |
| timestamp=datetime.now() | |
| ) | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| async def analyze_market(request: MarketRequest): | |
| try: | |
| signal_id = str(uuid.uuid4()) | |
| # In a real implementation, we would: | |
| # 1. Fetch market data | |
| # 2. Analyze with time-series models | |
| # 3. Combine with technical indicators | |
| return SignalResponse( | |
| direction="SHORT" if "BTC" in request.pair else "NEUTRAL", | |
| entry_zone=[2850, 2900] if "ETH" in request.pair else [42000, 42500], | |
| stop_loss=2950 if "ETH" in request.pair else 43500, | |
| take_profit_levels=[2700, 2600] if "ETH" in request.pair else [40000, 39000], | |
| timeframe_inferred=request.timeframe, | |
| confidence=68.2, | |
| explanation=f"Market shows overbought conditions on {request.timeframe} timeframe with RSI above 70. Expecting a pullback to support levels.", | |
| signal_id=signal_id, | |
| timestamp=datetime.now() | |
| ) | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| async def get_history(limit: int = 20): | |
| # In a real implementation, this would fetch from a database | |
| return [] | |
| async def test_webhook(request: WebhookTestRequest): | |
| # In a real implementation, this would send to the webhook URL | |
| return {"status": "success", "message": "Webhook test successful (mock response)"} | |
| ``` |