Spaces:
Running
Running
| ```python | |
| from typing import Dict, Any | |
| from dataclasses import dataclass | |
| from .models_registry import ModelsRegistry | |
| import random | |
| class SignalComponents: | |
| trend_score: float # -1 to +1 | |
| momentum_score: float # -1 to +1 | |
| pattern_score: float # -1 to +1 | |
| sentiment_score: float # -1 to +1 | |
| volatility: float # 0-1 | |
| class SignalEngine: | |
| def __init__(self, models: ModelsRegistry): | |
| self.models = models | |
| def generate_signal(self, components: SignalComponents) -> Dict[str, Any]: | |
| """Combine all analysis components into a final signal""" | |
| # Weighted average of scores | |
| final_score = ( | |
| 0.4 * components.trend_score + | |
| 0.3 * components.momentum_score + | |
| 0.2 * components.pattern_score + | |
| 0.1 * components.sentiment_score | |
| ) | |
| # Determine direction and confidence | |
| if abs(final_score) < 0.2: | |
| direction = "NEUTRAL" | |
| confidence = max(10, int(50 + 50 * abs(final_score) / 0.2)) | |
| else: | |
| direction = "LONG" if final_score > 0 else "SHORT" | |
| confidence = int((abs(final_score) - 0.2) / 0.8 * 90) + 10 | |
| # Calculate levels based on volatility | |
| base_price = 42000 # In real app, this would come from market data | |
| atr = components.volatility * base_price * 0.05 | |
| if direction == "LONG": | |
| entry_min = base_price - atr * 0.5 | |
| entry_max = base_price | |
| stop_loss = base_price - atr * 1.5 | |
| take_profit = [ | |
| base_price + atr * 2, | |
| base_price + atr * 3 | |
| ] | |
| elif direction == "SHORT": | |
| entry_min = base_price | |
| entry_max = base_price + atr * 0.5 | |
| stop_loss = base_price + atr * 1.5 | |
| take_profit = [ | |
| base_price - atr * 2, | |
| base_price - atr * 3 | |
| ] | |
| else: # NEUTRAL | |
| entry_min = base_price - atr * 0.2 | |
| entry_max = base_price + atr * 0.2 | |
| stop_loss = base_price + atr * 2 * (-1 if random.random() > 0.5 else 1) | |
| take_profit = [] | |
| # Generate explanation based on components | |
| explanation_parts = [] | |
| if components.trend_score > 0.3: | |
| explanation_parts.append("Strong bullish trend detected.") | |
| elif components.trend_score < -0.3: | |
| explanation_parts.append("Strong bearish trend detected.") | |
| if components.momentum_score > 0.4: | |
| explanation_parts.append("Momentum favors upside.") | |
| elif components.momentum_score < -0.4: | |
| explanation_parts.append("Momentum favors downside.") | |
| if components.pattern_score > 0.5: | |
| explanation_parts.append("Bullish chart pattern identified.") | |
| elif components.pattern_score < -0.5: | |
| explanation_parts.append("Bearish chart pattern identified.") | |
| if not explanation_parts: | |
| explanation_parts.append("No strong signals detected - market may be ranging.") | |
| explanation = " ".join(explanation_parts) | |
| return { | |
| "direction": direction, | |
| "entry_zone": [entry_min, entry_max], | |
| "stop_loss": stop_loss, | |
| "take_profit_levels": take_profit, | |
| "confidence": confidence, | |
| "explanation": explanation | |
| } | |
| async def analyze_market(self, pair: str, timeframe: str) -> Dict[str, Any]: | |
| """Analyze market conditions and generate signal""" | |
| # In a real implementation, we would: | |
| # 1. Fetch market data | |
| # 2. Call time-series models | |
| # 3. Calculate technical indicators | |
| # 4. Get sentiment if available | |
| # Mock analysis for demo purposes | |
| components = SignalComponents( | |
| trend_score=random.uniform(-1, 1), | |
| momentum_score=random.uniform(-0.5, 0.8), | |
| pattern_score=random.uniform(-1, 1), | |
| sentiment_score=random.uniform(-0.3, 0.3), | |
| volatility=random.uniform(0.2, 0.8) | |
| ) | |
| return self.generate_signal(components) | |
| async def analyze_screenshot(self, image_data: bytes) -> Dict[str, Any]: | |
| """Analyze uploaded chart screenshot""" | |
| # In a real implementation, we would: | |
| # 1. Process image with vision model | |
| # 2. Extract text with OCR | |
| # 3. Analyze patterns and generate signal | |
| # Mock analysis for demo purposes | |
| components = SignalComponents( | |
| trend_score=random.uniform(0, 1), # Screenshots more likely to be long ideas | |
| momentum_score=random.uniform(0, 0.9), | |
| pattern_score=random.uniform(0.1, 1), | |
| sentiment_score=random.uniform(0, 0.5), | |
| volatility=random.uniform(0.3, 0.9) | |
| ) | |
| return self.generate_signal(components) | |
| ``` | |
| Let me continue with the frontend setup and other necessary files: |