Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import cv2
|
| 3 |
+
import mediapipe as mp
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from collections import deque
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Constants (fallback defaults)
|
| 10 |
+
SEQUENCE_LENGTH = 30
|
| 11 |
+
FEATURE_LENGTH = 168
|
| 12 |
+
|
| 13 |
+
# Load model & preprocessing
|
| 14 |
+
def load_model_and_preprocessing():
|
| 15 |
+
global scaler, label_encoder, model, labels_dict
|
| 16 |
+
with open('lstm_preprocessing.pickle', 'rb') as f:
|
| 17 |
+
preproc = pickle.load(f)
|
| 18 |
+
scaler = preproc['scaler']
|
| 19 |
+
label_encoder = preproc['label_encoder']
|
| 20 |
+
timesteps = preproc['timesteps']
|
| 21 |
+
n_features = preproc['n_features']
|
| 22 |
+
|
| 23 |
+
global SEQUENCE_LENGTH, FEATURE_LENGTH
|
| 24 |
+
SEQUENCE_LENGTH = timesteps
|
| 25 |
+
FEATURE_LENGTH = n_features
|
| 26 |
+
|
| 27 |
+
model = tf.keras.models.load_model('lstm_model.h5')
|
| 28 |
+
|
| 29 |
+
labels_dict = {0:'salam',1:'good morning',2:'thanks',3:'ana',4:'anta',5:'ante',6:'hua',
|
| 30 |
+
7:'hea',8:'antm',9:'hm',10:'name',11:'how r u',12:'thanks god',13:'happy',
|
| 31 |
+
14:'sad',15:'angry',16:'good',17:'bad',18:'tired',19:'sick',20:'see',21:'say',
|
| 32 |
+
22:'talk',23:'walk',24:'went',25:'came',26:'home',27:'eat',28:'slept',29:'university',
|
| 33 |
+
30:'today',31:'tmrw',32:'sunday',33:'tuesday',34:'thursday',35:'friday',36:'week',
|
| 34 |
+
37:'month',38:'year',39:'when',40:'I know',41:'thinking',42:'forgetten',43:'love',
|
| 35 |
+
44:'I want',45:'helps',46:'not allowed',47:'agree',48:'together',49:'different'}
|
| 36 |
+
|
| 37 |
+
load_model_and_preprocessing()
|
| 38 |
+
|
| 39 |
+
# MediaPipe setup
|
| 40 |
+
mp_hands = mp.solutions.hands
|
| 41 |
+
hands = mp_hands.Hands(static_image_mode=True, max_num_hands=2)
|
| 42 |
+
|
| 43 |
+
def extract_hand_features(image):
|
| 44 |
+
data_aux = np.zeros(FEATURE_LENGTH, dtype=np.float32)
|
| 45 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 46 |
+
results = hands.process(image_rgb)
|
| 47 |
+
if not results.multi_hand_landmarks:
|
| 48 |
+
return None
|
| 49 |
+
|
| 50 |
+
for hand_idx, hand_landmarks in enumerate(results.multi_hand_landmarks):
|
| 51 |
+
if hand_idx >= 2: break
|
| 52 |
+
min_x = min([lm.x for lm in hand_landmarks.landmark])
|
| 53 |
+
min_y = min([lm.y for lm in hand_landmarks.landmark])
|
| 54 |
+
base_idx = hand_idx * 84
|
| 55 |
+
for i, lm in enumerate(hand_landmarks.landmark):
|
| 56 |
+
data_aux[base_idx + i * 2] = lm.x - min_x
|
| 57 |
+
data_aux[base_idx + i * 2 + 1] = lm.y - min_y
|
| 58 |
+
|
| 59 |
+
return data_aux
|
| 60 |
+
|
| 61 |
+
sequence_buffer = deque(maxlen=SEQUENCE_LENGTH)
|
| 62 |
+
|
| 63 |
+
def predict_sign(image):
|
| 64 |
+
image = np.array(image)
|
| 65 |
+
features = extract_hand_features(image)
|
| 66 |
+
if features is None:
|
| 67 |
+
return "No hand detected"
|
| 68 |
+
sequence_buffer.append(features)
|
| 69 |
+
|
| 70 |
+
if len(sequence_buffer) < SEQUENCE_LENGTH:
|
| 71 |
+
return f"Waiting for sequence: {len(sequence_buffer)}/{SEQUENCE_LENGTH}"
|
| 72 |
+
|
| 73 |
+
sequence_data = np.array(list(sequence_buffer)).reshape(1, SEQUENCE_LENGTH, FEATURE_LENGTH)
|
| 74 |
+
scaled = scaler.transform(sequence_data.reshape(-1, FEATURE_LENGTH)).reshape(1, SEQUENCE_LENGTH, FEATURE_LENGTH)
|
| 75 |
+
prediction_scores = model.predict(scaled, verbose=0)[0]
|
| 76 |
+
predicted_idx = np.argmax(prediction_scores)
|
| 77 |
+
confidence = prediction_scores[predicted_idx]
|
| 78 |
+
label = labels_dict.get(predicted_idx, "Unknown")
|
| 79 |
+
|
| 80 |
+
return f"{label} ({confidence:.2f})"
|
| 81 |
+
|
| 82 |
+
# Gradio interface
|
| 83 |
+
interface = gr.Interface(fn=predict_sign,
|
| 84 |
+
inputs=gr.Image(source="webcam", tool="editor", type="numpy"),
|
| 85 |
+
outputs="text",
|
| 86 |
+
title="Sign Language Recognition",
|
| 87 |
+
description="Perform a sign and capture it. Wait for prediction...")
|
| 88 |
+
|
| 89 |
+
# ✅ LAUNCH THE APP
|
| 90 |
+
interface.launch()
|