Allex21 commited on
Commit
e431a86
·
verified ·
1 Parent(s): e1dcfc0

Upload 2 files

Browse files
Files changed (2) hide show
  1. fine_tune.py +538 -0
  2. requirements.txt +42 -42
fine_tune.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # training with captions
2
+ # XXX dropped option: hypernetwork training
3
+
4
+ import argparse
5
+ import math
6
+ import os
7
+ from multiprocessing import Value
8
+ import toml
9
+
10
+ from tqdm import tqdm
11
+
12
+ import torch
13
+ from library import deepspeed_utils
14
+ from library.device_utils import init_ipex, clean_memory_on_device
15
+
16
+ init_ipex()
17
+
18
+ from accelerate.utils import set_seed
19
+ from diffusers import DDPMScheduler
20
+
21
+ from library.utils import setup_logging, add_logging_arguments
22
+
23
+ setup_logging()
24
+ import logging
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+ import library.train_util as train_util
29
+ import library.config_util as config_util
30
+ from library.config_util import (
31
+ ConfigSanitizer,
32
+ BlueprintGenerator,
33
+ )
34
+ import library.custom_train_functions as custom_train_functions
35
+ from library.custom_train_functions import (
36
+ apply_snr_weight,
37
+ get_weighted_text_embeddings,
38
+ prepare_scheduler_for_custom_training,
39
+ scale_v_prediction_loss_like_noise_prediction,
40
+ apply_debiased_estimation,
41
+ )
42
+
43
+
44
+ def train(args):
45
+ train_util.verify_training_args(args)
46
+ train_util.prepare_dataset_args(args, True)
47
+ deepspeed_utils.prepare_deepspeed_args(args)
48
+ setup_logging(args, reset=True)
49
+
50
+ cache_latents = args.cache_latents
51
+
52
+ if args.seed is not None:
53
+ set_seed(args.seed) # 乱数系列を初期化する
54
+
55
+ tokenizer = train_util.load_tokenizer(args)
56
+
57
+ # データセットを準備する
58
+ if args.dataset_class is None:
59
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, False, True))
60
+ if args.dataset_config is not None:
61
+ logger.info(f"Load dataset config from {args.dataset_config}")
62
+ user_config = config_util.load_user_config(args.dataset_config)
63
+ ignored = ["train_data_dir", "in_json"]
64
+ if any(getattr(args, attr) is not None for attr in ignored):
65
+ logger.warning(
66
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
67
+ ", ".join(ignored)
68
+ )
69
+ )
70
+ else:
71
+ user_config = {
72
+ "datasets": [
73
+ {
74
+ "subsets": [
75
+ {
76
+ "image_dir": args.train_data_dir,
77
+ "metadata_file": args.in_json,
78
+ }
79
+ ]
80
+ }
81
+ ]
82
+ }
83
+
84
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
85
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
86
+ else:
87
+ train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
88
+
89
+ current_epoch = Value("i", 0)
90
+ current_step = Value("i", 0)
91
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
92
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
93
+
94
+ train_dataset_group.verify_bucket_reso_steps(64)
95
+
96
+ if args.debug_dataset:
97
+ train_util.debug_dataset(train_dataset_group)
98
+ return
99
+ if len(train_dataset_group) == 0:
100
+ logger.error(
101
+ "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
102
+ )
103
+ return
104
+
105
+ if cache_latents:
106
+ assert (
107
+ train_dataset_group.is_latent_cacheable()
108
+ ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
109
+
110
+ # acceleratorを準備する
111
+ logger.info("prepare accelerator")
112
+ accelerator = train_util.prepare_accelerator(args)
113
+
114
+ # mixed precisionに対応した型を用意しておき適宜castする
115
+ weight_dtype, save_dtype = train_util.prepare_dtype(args)
116
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
117
+
118
+ # モデルを読み込む
119
+ text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
120
+
121
+ # verify load/save model formats
122
+ if load_stable_diffusion_format:
123
+ src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
124
+ src_diffusers_model_path = None
125
+ else:
126
+ src_stable_diffusion_ckpt = None
127
+ src_diffusers_model_path = args.pretrained_model_name_or_path
128
+
129
+ if args.save_model_as is None:
130
+ save_stable_diffusion_format = load_stable_diffusion_format
131
+ use_safetensors = args.use_safetensors
132
+ else:
133
+ save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
134
+ use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
135
+
136
+ # Diffusers版のxformers使用フラグを設定する関数
137
+ def set_diffusers_xformers_flag(model, valid):
138
+ # model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
139
+ # pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
140
+ # U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
141
+ # 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
142
+
143
+ # Recursively walk through all the children.
144
+ # Any children which exposes the set_use_memory_efficient_attention_xformers method
145
+ # gets the message
146
+ def fn_recursive_set_mem_eff(module: torch.nn.Module):
147
+ if hasattr(module, "set_use_memory_efficient_attention_xformers"):
148
+ module.set_use_memory_efficient_attention_xformers(valid)
149
+
150
+ for child in module.children():
151
+ fn_recursive_set_mem_eff(child)
152
+
153
+ fn_recursive_set_mem_eff(model)
154
+
155
+ # モデルに xformers とか memory efficient attention を組み込む
156
+ if args.diffusers_xformers:
157
+ accelerator.print("Use xformers by Diffusers")
158
+ set_diffusers_xformers_flag(unet, True)
159
+ else:
160
+ # Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
161
+ accelerator.print("Disable Diffusers' xformers")
162
+ set_diffusers_xformers_flag(unet, False)
163
+ train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
164
+
165
+ # 学習を準備する
166
+ if cache_latents:
167
+ vae.to(accelerator.device, dtype=vae_dtype)
168
+ vae.requires_grad_(False)
169
+ vae.eval()
170
+ with torch.no_grad():
171
+ train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
172
+ vae.to("cpu")
173
+ clean_memory_on_device(accelerator.device)
174
+
175
+ accelerator.wait_for_everyone()
176
+
177
+ # 学習を準備する:モデルを適切な状態にする
178
+ training_models = []
179
+ if args.gradient_checkpointing:
180
+ unet.enable_gradient_checkpointing()
181
+ training_models.append(unet)
182
+
183
+ if args.train_text_encoder:
184
+ accelerator.print("enable text encoder training")
185
+ if args.gradient_checkpointing:
186
+ text_encoder.gradient_checkpointing_enable()
187
+ training_models.append(text_encoder)
188
+ else:
189
+ text_encoder.to(accelerator.device, dtype=weight_dtype)
190
+ text_encoder.requires_grad_(False) # text encoderは学習しない
191
+ if args.gradient_checkpointing:
192
+ text_encoder.gradient_checkpointing_enable()
193
+ text_encoder.train() # required for gradient_checkpointing
194
+ else:
195
+ text_encoder.eval()
196
+
197
+ if not cache_latents:
198
+ vae.requires_grad_(False)
199
+ vae.eval()
200
+ vae.to(accelerator.device, dtype=vae_dtype)
201
+
202
+ for m in training_models:
203
+ m.requires_grad_(True)
204
+
205
+ trainable_params = []
206
+ if args.learning_rate_te is None or not args.train_text_encoder:
207
+ for m in training_models:
208
+ trainable_params.extend(m.parameters())
209
+ else:
210
+ trainable_params = [
211
+ {"params": list(unet.parameters()), "lr": args.learning_rate},
212
+ {"params": list(text_encoder.parameters()), "lr": args.learning_rate_te},
213
+ ]
214
+
215
+ # 学習に必要なクラスを準備する
216
+ accelerator.print("prepare optimizer, data loader etc.")
217
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=trainable_params)
218
+
219
+ # dataloaderを準備する
220
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
221
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
222
+ train_dataloader = torch.utils.data.DataLoader(
223
+ train_dataset_group,
224
+ batch_size=1,
225
+ shuffle=True,
226
+ collate_fn=collator,
227
+ num_workers=n_workers,
228
+ persistent_workers=args.persistent_data_loader_workers,
229
+ )
230
+
231
+ # 学習ステップ数を計算する
232
+ if args.max_train_epochs is not None:
233
+ args.max_train_steps = args.max_train_epochs * math.ceil(
234
+ len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
235
+ )
236
+ accelerator.print(
237
+ f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
238
+ )
239
+
240
+ # データセット側にも学習ステップを送信
241
+ train_dataset_group.set_max_train_steps(args.max_train_steps)
242
+
243
+ # lr schedulerを用意する
244
+ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
245
+
246
+ # 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
247
+ if args.full_fp16:
248
+ assert (
249
+ args.mixed_precision == "fp16"
250
+ ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
251
+ accelerator.print("enable full fp16 training.")
252
+ unet.to(weight_dtype)
253
+ text_encoder.to(weight_dtype)
254
+
255
+ if args.deepspeed:
256
+ if args.train_text_encoder:
257
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet, text_encoder=text_encoder)
258
+ else:
259
+ ds_model = deepspeed_utils.prepare_deepspeed_model(args, unet=unet)
260
+ ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
261
+ ds_model, optimizer, train_dataloader, lr_scheduler
262
+ )
263
+ training_models = [ds_model]
264
+ else:
265
+ # acceleratorがなんかよろしくやってくれるらしい
266
+ if args.train_text_encoder:
267
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
268
+ unet, text_encoder, optimizer, train_dataloader, lr_scheduler
269
+ )
270
+ else:
271
+ unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
272
+
273
+ # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
274
+ if args.full_fp16:
275
+ train_util.patch_accelerator_for_fp16_training(accelerator)
276
+
277
+ # resumeする
278
+ train_util.resume_from_local_or_hf_if_specified(accelerator, args)
279
+
280
+ # epoch数を計算する
281
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
282
+ num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
283
+ if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
284
+ args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
285
+
286
+ # 学習する
287
+ total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
288
+ accelerator.print("running training / 学習開始")
289
+ accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
290
+ accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
291
+ accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
292
+ accelerator.print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
293
+ accelerator.print(
294
+ f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
295
+ )
296
+ accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
297
+ accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
298
+
299
+ progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
300
+ global_step = 0
301
+
302
+ noise_scheduler = DDPMScheduler(
303
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
304
+ )
305
+ prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
306
+ if args.zero_terminal_snr:
307
+ custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
308
+
309
+ if accelerator.is_main_process:
310
+ init_kwargs = {}
311
+ if args.wandb_run_name:
312
+ init_kwargs["wandb"] = {"name": args.wandb_run_name}
313
+ if args.log_tracker_config is not None:
314
+ init_kwargs = toml.load(args.log_tracker_config)
315
+ accelerator.init_trackers(
316
+ "finetuning" if args.log_tracker_name is None else args.log_tracker_name,
317
+ config=train_util.get_sanitized_config_or_none(args),
318
+ init_kwargs=init_kwargs,
319
+ )
320
+
321
+ # For --sample_at_first
322
+ train_util.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
323
+
324
+ loss_recorder = train_util.LossRecorder()
325
+ for epoch in range(num_train_epochs):
326
+ accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
327
+ current_epoch.value = epoch + 1
328
+
329
+ for m in training_models:
330
+ m.train()
331
+
332
+ for step, batch in enumerate(train_dataloader):
333
+ current_step.value = global_step
334
+ with accelerator.accumulate(*training_models):
335
+ with torch.no_grad():
336
+ if "latents" in batch and batch["latents"] is not None:
337
+ latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
338
+ else:
339
+ # latentに変換
340
+ latents = vae.encode(batch["images"].to(dtype=vae_dtype)).latent_dist.sample().to(weight_dtype)
341
+ latents = latents * 0.18215
342
+ b_size = latents.shape[0]
343
+
344
+ with torch.set_grad_enabled(args.train_text_encoder):
345
+ # Get the text embedding for conditioning
346
+ if args.weighted_captions:
347
+ encoder_hidden_states = get_weighted_text_embeddings(
348
+ tokenizer,
349
+ text_encoder,
350
+ batch["captions"],
351
+ accelerator.device,
352
+ args.max_token_length // 75 if args.max_token_length else 1,
353
+ clip_skip=args.clip_skip,
354
+ )
355
+ else:
356
+ input_ids = batch["input_ids"].to(accelerator.device)
357
+ encoder_hidden_states = train_util.get_hidden_states(
358
+ args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
359
+ )
360
+
361
+ # Sample noise, sample a random timestep for each image, and add noise to the latents,
362
+ # with noise offset and/or multires noise if specified
363
+ noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(
364
+ args, noise_scheduler, latents
365
+ )
366
+
367
+ # Predict the noise residual
368
+ with accelerator.autocast():
369
+ noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
370
+
371
+ if args.v_parameterization:
372
+ # v-parameterization training
373
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
374
+ else:
375
+ target = noise
376
+
377
+ if args.min_snr_gamma or args.scale_v_pred_loss_like_noise_pred or args.debiased_estimation_loss:
378
+ # do not mean over batch dimension for snr weight or scale v-pred loss
379
+ loss = train_util.conditional_loss(
380
+ noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
381
+ )
382
+ loss = loss.mean([1, 2, 3])
383
+
384
+ if args.min_snr_gamma:
385
+ loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
386
+ if args.scale_v_pred_loss_like_noise_pred:
387
+ loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
388
+ if args.debiased_estimation_loss:
389
+ loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization)
390
+
391
+ loss = loss.mean() # mean over batch dimension
392
+ else:
393
+ loss = train_util.conditional_loss(
394
+ noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c
395
+ )
396
+
397
+ accelerator.backward(loss)
398
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
399
+ params_to_clip = []
400
+ for m in training_models:
401
+ params_to_clip.extend(m.parameters())
402
+ accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
403
+
404
+ optimizer.step()
405
+ lr_scheduler.step()
406
+ optimizer.zero_grad(set_to_none=True)
407
+
408
+ # Checks if the accelerator has performed an optimization step behind the scenes
409
+ if accelerator.sync_gradients:
410
+ progress_bar.update(1)
411
+ global_step += 1
412
+
413
+ train_util.sample_images(
414
+ accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
415
+ )
416
+
417
+ # 指定ステップごとにモデルを保存
418
+ if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
419
+ accelerator.wait_for_everyone()
420
+ if accelerator.is_main_process:
421
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
422
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
423
+ args,
424
+ False,
425
+ accelerator,
426
+ src_path,
427
+ save_stable_diffusion_format,
428
+ use_safetensors,
429
+ save_dtype,
430
+ epoch,
431
+ num_train_epochs,
432
+ global_step,
433
+ accelerator.unwrap_model(text_encoder),
434
+ accelerator.unwrap_model(unet),
435
+ vae,
436
+ )
437
+
438
+ current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
439
+ if args.logging_dir is not None:
440
+ logs = {"loss": current_loss}
441
+ train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=True)
442
+ accelerator.log(logs, step=global_step)
443
+
444
+ loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
445
+ avr_loss: float = loss_recorder.moving_average
446
+ logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
447
+ progress_bar.set_postfix(**logs)
448
+
449
+ if global_step >= args.max_train_steps:
450
+ break
451
+
452
+ if args.logging_dir is not None:
453
+ logs = {"loss/epoch": loss_recorder.moving_average}
454
+ accelerator.log(logs, step=epoch + 1)
455
+
456
+ accelerator.wait_for_everyone()
457
+
458
+ if args.save_every_n_epochs is not None:
459
+ if accelerator.is_main_process:
460
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
461
+ train_util.save_sd_model_on_epoch_end_or_stepwise(
462
+ args,
463
+ True,
464
+ accelerator,
465
+ src_path,
466
+ save_stable_diffusion_format,
467
+ use_safetensors,
468
+ save_dtype,
469
+ epoch,
470
+ num_train_epochs,
471
+ global_step,
472
+ accelerator.unwrap_model(text_encoder),
473
+ accelerator.unwrap_model(unet),
474
+ vae,
475
+ )
476
+
477
+ train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
478
+
479
+ is_main_process = accelerator.is_main_process
480
+ if is_main_process:
481
+ unet = accelerator.unwrap_model(unet)
482
+ text_encoder = accelerator.unwrap_model(text_encoder)
483
+
484
+ accelerator.end_training()
485
+
486
+ if is_main_process and (args.save_state or args.save_state_on_train_end):
487
+ train_util.save_state_on_train_end(args, accelerator)
488
+
489
+ del accelerator # この後メモリを使うのでこれは消す
490
+
491
+ if is_main_process:
492
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
493
+ train_util.save_sd_model_on_train_end(
494
+ args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
495
+ )
496
+ logger.info("model saved.")
497
+
498
+
499
+ def setup_parser() -> argparse.ArgumentParser:
500
+ parser = argparse.ArgumentParser()
501
+
502
+ add_logging_arguments(parser)
503
+ train_util.add_sd_models_arguments(parser)
504
+ train_util.add_dataset_arguments(parser, False, True, True)
505
+ train_util.add_training_arguments(parser, False)
506
+ deepspeed_utils.add_deepspeed_arguments(parser)
507
+ train_util.add_sd_saving_arguments(parser)
508
+ train_util.add_optimizer_arguments(parser)
509
+ config_util.add_config_arguments(parser)
510
+ custom_train_functions.add_custom_train_arguments(parser)
511
+
512
+ parser.add_argument(
513
+ "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
514
+ )
515
+ parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
516
+ parser.add_argument(
517
+ "--learning_rate_te",
518
+ type=float,
519
+ default=None,
520
+ help="learning rate for text encoder, default is same as unet / Text Encoderの学習率、デフォルトはunetと同じ",
521
+ )
522
+ parser.add_argument(
523
+ "--no_half_vae",
524
+ action="store_true",
525
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
526
+ )
527
+
528
+ return parser
529
+
530
+
531
+ if __name__ == "__main__":
532
+ parser = setup_parser()
533
+
534
+ args = parser.parse_args()
535
+ train_util.verify_command_line_training_args(args)
536
+ args = train_util.read_config_from_file(args, parser)
537
+
538
+ train(args)
requirements.txt CHANGED
@@ -1,42 +1,42 @@
1
- # Core ML libraries
2
- torch>=2.0.0
3
- torchvision>=0.15.0
4
- torchaudio>=2.0.0
5
-
6
- # Diffusion and transformers
7
- diffusers>=0.21.0
8
- transformers>=4.25.0
9
- accelerate>=0.20.0
10
- safetensors>=0.3.0
11
- huggingface-hub>=0.16.0
12
-
13
- # Optimization
14
- xformers>=0.0.20
15
- bitsandbytes>=0.41.0
16
-
17
- # Data processing
18
- Pillow>=9.0.0
19
- opencv-python>=4.7.0
20
- numpy>=1.21.0
21
- scipy>=1.9.0
22
-
23
- # Configuration and utilities
24
- toml>=0.10.0
25
- omegaconf>=2.3.0
26
- tqdm>=4.64.0
27
-
28
- # Logging and monitoring
29
- tensorboard>=2.13.0
30
- wandb>=0.15.0
31
-
32
- # Web interface
33
- gradio>=4.0.0
34
-
35
- # Additional utilities
36
- matplotlib>=3.5.0
37
- datasets>=2.14.0
38
- peft>=0.5.0
39
-
40
- # System utilities
41
- psutil>=5.9.0
42
-
 
1
+ accelerate==0.30.0
2
+ transformers==4.44.0
3
+ diffusers[torch]==0.25.0
4
+ ftfy==6.1.1
5
+ # albumentations==1.3.0
6
+ opencv-python==4.8.1.78
7
+ einops==0.7.0
8
+ pytorch-lightning==1.9.0
9
+ bitsandbytes==0.44.0
10
+ prodigyopt==1.0
11
+ lion-pytorch==0.0.6
12
+ tensorboard
13
+ safetensors==0.4.2
14
+ # gradio==3.16.2
15
+ altair==4.2.2
16
+ easygui==0.98.3
17
+ toml==0.10.2
18
+ voluptuous==0.13.1
19
+ huggingface-hub==0.24.5
20
+ # for Image utils
21
+ imagesize==1.4.1
22
+ # for BLIP captioning
23
+ # requests==2.28.2
24
+ # timm==0.6.12
25
+ # fairscale==0.4.13
26
+ # for WD14 captioning (tensorflow)
27
+ # tensorflow==2.10.1
28
+ # for WD14 captioning (onnx)
29
+ # onnx==1.15.0
30
+ # onnxruntime-gpu==1.17.1
31
+ # onnxruntime==1.17.1
32
+ # for cuda 12.1(default 11.8)
33
+ # onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
34
+
35
+ # this is for onnx:
36
+ # protobuf==3.20.3
37
+ # open clip for SDXL
38
+ # open-clip-torch==2.20.0
39
+ # For logging
40
+ rich==13.7.0
41
+ # for kohya_ss library
42
+ -e .