Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,306 Bytes
35d68ae a83f1cc 35d68ae ee25577 35d68ae 405a7ef 00b5731 405a7ef 35d68ae a83f1cc 35d68ae a83f1cc 82dcfd3 a83f1cc 82dcfd3 a83f1cc 82dcfd3 a83f1cc 82dcfd3 a83f1cc 82dcfd3 35d68ae a83f1cc 35d68ae 405a7ef 35d68ae a83f1cc 35d68ae a83f1cc 35d68ae d283cc4 35d68ae a83f1cc 35d68ae 6a8403c a83f1cc 35d68ae a83f1cc 35d68ae ee25577 35d68ae add063a 74309f5 add063a 3e313d0 add063a ee25577 add063a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
from __future__ import annotations
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
try:
import spaces # type: ignore
except Exception: # pragma: no cover
class _SpacesShim: # fallback for local runs
@staticmethod
def GPU(*_args, **_kwargs):
def identity(fn):
return fn
return identity
spaces = _SpacesShim()
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "600"))
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", "0.2"))
DEFAULT_TOP_P = float(os.environ.get("DEFAULT_TOP_P", "0.9"))
HF_TOKEN = os.environ.get("HF_TOKEN")
def _normalise_bool(value: Optional[str], *, default: bool = False) -> bool:
if value is None:
return default
return value.lower() in {"1", "true", "yes", "on"}
_strategy = os.environ.get("MODEL_LOAD_STRATEGY") or os.environ.get("LOAD_STRATEGY")
if _strategy:
_strategy = _strategy.lower().strip()
# Backwards compatibility flags remain available for older deployments.
USE_8BIT = _normalise_bool(os.environ.get("LOAD_IN_8BIT"), default=True)
USE_4BIT = _normalise_bool(os.environ.get("LOAD_IN_4BIT"), default=False)
SKIP_WARM_START = _normalise_bool(os.environ.get("SKIP_WARM_START"), default=False)
ALLOW_WARM_START_FAILURE = _normalise_bool(
os.environ.get("ALLOW_WARM_START_FAILURE"),
default=False,
)
def _normalise_strategy(name: Optional[str]) -> Optional[str]:
if not name:
return None
alias = name.lower().strip()
mapping = {
"8": "8bit",
"8bit": "8bit",
"int8": "8bit",
"bnb8": "8bit",
"llm.int8": "8bit",
"4": "4bit",
"4bit": "4bit",
"int4": "4bit",
"bnb4": "4bit",
"nf4": "4bit",
"bf16": "bf16",
"bfloat16": "bf16",
"fp16": "fp16",
"float16": "fp16",
"half": "fp16",
"cpu": "cpu",
"fp32": "cpu",
"full": "cpu",
}
canonical = mapping.get(alias, alias)
if canonical not in {"8bit", "4bit", "bf16", "fp16", "cpu"}:
return None
return canonical
def _strategy_sequence() -> List[str]:
order: List[str] = []
seen: set[str] = set()
def push(entry: Optional[str]) -> None:
canonical = _normalise_strategy(entry)
if not canonical or canonical in seen:
return
seen.add(canonical)
order.append(canonical)
push(_strategy)
for raw in os.environ.get("MODEL_LOAD_STRATEGIES", "").split(","):
push(raw)
# Compatibility: honour legacy boolean switches.
if USE_8BIT:
push("8bit")
if USE_4BIT:
push("4bit")
if not (USE_8BIT or USE_4BIT):
push("bf16" if torch.cuda.is_available() else "cpu")
for fallback in ("8bit", "4bit", "bf16", "fp16", "cpu"):
push(fallback)
return order
DEFAULT_MODEL_FALLBACKS: List[str] = [
"Alovestocode/router-gemma3-merged",
"Alovestocode/router-llama31-merged",
"Alovestocode/router-qwen3-32b-merged",
]
def _candidate_models() -> List[str]:
explicit = os.environ.get("MODEL_REPO")
overrides = [
item.strip()
for item in os.environ.get("MODEL_FALLBACKS", "").split(",")
if item.strip()
]
candidates: List[str] = []
seen = set()
for name in [explicit, *overrides, *DEFAULT_MODEL_FALLBACKS]:
if not name or name in seen:
continue
seen.add(name)
candidates.append(name)
return candidates
def _initialise_tokenizer() -> tuple[str, AutoTokenizer]:
errors: dict[str, str] = {}
for candidate in _candidate_models():
try:
tok = AutoTokenizer.from_pretrained(
candidate,
use_fast=False,
token=HF_TOKEN,
)
print(f"Loaded tokenizer from {candidate}")
return candidate, tok
except Exception as exc: # pragma: no cover - download errors
errors[candidate] = str(exc)
print(f"Tokenizer load failed for {candidate}: {exc}")
raise RuntimeError(
"Unable to load any router model. Tried:\n" +
"\n".join(f"- {k}: {v}" for k, v in errors.items())
)
MODEL_ID, tokenizer = _initialise_tokenizer()
class GeneratePayload(BaseModel):
prompt: str
max_new_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
class GenerateResponse(BaseModel):
text: str
_MODEL = None
ACTIVE_STRATEGY: Optional[str] = None
def _build_load_kwargs(strategy: str, gpu_compute_dtype: torch.dtype) -> Tuple[str, dict]:
"""Return kwargs for `from_pretrained` using the given strategy."""
cuda_available = torch.cuda.is_available()
strategy = strategy.lower()
kwargs: dict = {
"trust_remote_code": True,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
}
if strategy == "8bit":
if not cuda_available:
raise RuntimeError("8bit loading requires CUDA availability")
kwargs["device_map"] = "auto"
kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
)
return "8bit", kwargs
if strategy == "4bit":
if not cuda_available:
raise RuntimeError("4bit loading requires CUDA availability")
kwargs["device_map"] = "auto"
kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=gpu_compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
return "4bit", kwargs
if strategy == "bf16":
kwargs["device_map"] = "auto" if cuda_available else "cpu"
kwargs["torch_dtype"] = torch.bfloat16 if cuda_available else torch.float32
return "bf16", kwargs
if strategy == "fp16":
kwargs["device_map"] = "auto" if cuda_available else "cpu"
kwargs["torch_dtype"] = torch.float16 if cuda_available else torch.float32
return "fp16", kwargs
if strategy == "cpu":
kwargs["device_map"] = "cpu"
kwargs["torch_dtype"] = torch.float32
return "cpu", kwargs
raise ValueError(f"Unknown load strategy: {strategy}")
def get_model() -> AutoModelForCausalLM:
"""Load the model. This function should be called within a @spaces.GPU decorated function."""
global _MODEL, ACTIVE_STRATEGY
if _MODEL is None:
compute_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
attempts: List[Tuple[str, Exception]] = []
strategies = _strategy_sequence()
print(f"Attempting to load {MODEL_ID} with strategies: {strategies}")
for candidate in strategies:
try:
label, kwargs = _build_load_kwargs(candidate, compute_dtype)
print(f"Trying strategy '{label}' for {MODEL_ID} ...")
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **kwargs)
_MODEL = model.eval()
ACTIVE_STRATEGY = label
print(f"Loaded {MODEL_ID} with strategy='{label}'")
break
except Exception as exc: # pragma: no cover - depends on runtime
attempts.append((candidate, exc))
print(f"Strategy '{candidate}' failed: {exc}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if _MODEL is None:
detail = "; ".join(f"{name}: {err}" for name, err in attempts) or "no details"
last_exc = attempts[-1][1] if attempts else None
raise RuntimeError(
f"Unable to load {MODEL_ID}. Tried strategies {strategies}. Details: {detail}"
) from last_exc
return _MODEL
@lru_cache(maxsize=8)
def _build_system_prompt() -> str:
return (
"You are the Router Agent coordinating Math, Code, and General-Search specialists.\n"
"Emit ONLY strict JSON with keys route_plan, route_rationale, expected_artifacts,\n"
"thinking_outline, handoff_plan, todo_list, difficulty, tags, acceptance_criteria, metrics."
)
def _generate(
prompt: str,
max_new_tokens: int = MAX_NEW_TOKENS,
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
) -> str:
if not prompt.strip():
raise ValueError("Prompt must not be empty.")
model = get_model()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
eos = tokenizer.eos_token_id
with torch.inference_mode():
output_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
eos_token_id=eos,
pad_token_id=eos,
)
text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return text[len(prompt) :].strip() or text.strip()
@spaces.GPU(duration=300)
def _generate_with_gpu(
prompt: str,
max_new_tokens: int = MAX_NEW_TOKENS,
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
) -> str:
"""Generate function wrapped with ZeroGPU decorator. Must be defined before FastAPI app for ZeroGPU detection."""
return _generate(prompt, max_new_tokens, temperature, top_p)
fastapi_app = FastAPI(title="Router Model API", version="1.0.0")
@fastapi_app.get("/")
def healthcheck() -> dict[str, str]:
return {
"status": "ok",
"model": MODEL_ID,
"strategy": ACTIVE_STRATEGY or "pending",
}
@fastapi_app.on_event("startup")
def warm_start() -> None:
"""Warm start is disabled for ZeroGPU - model loads on first request."""
# ZeroGPU functions decorated with @spaces.GPU cannot be called during startup.
# They must be called within request handlers. Skip warm start for ZeroGPU.
print("Warm start skipped for ZeroGPU. Model will load on first request.")
return
@fastapi_app.post("/v1/generate", response_model=GenerateResponse)
def generate_endpoint(payload: GeneratePayload) -> GenerateResponse:
try:
text = _generate_with_gpu(
prompt=payload.prompt,
max_new_tokens=payload.max_new_tokens or MAX_NEW_TOKENS,
temperature=payload.temperature or DEFAULT_TEMPERATURE,
top_p=payload.top_p or DEFAULT_TOP_P,
)
except Exception as exc: # pragma: no cover - errors bubbled to caller.
raise HTTPException(status_code=500, detail=str(exc))
return GenerateResponse(text=text)
@fastapi_app.get("/gradio", response_class=HTMLResponse)
def interactive_ui() -> str:
return """
<!doctype html>
<html>
<head>
<title>Router Control Room</title>
<style>
body { font-family: sans-serif; margin: 40px; max-width: 900px; }
textarea, input { width: 100%; }
textarea { height: 180px; }
pre { background: #111; color: #0f0; padding: 16px; border-radius: 8px; }
</style>
</head>
<body>
<h1>Router Control Room</h1>
<p>This lightweight UI calls <code>/v1/generate</code>. Provide a full router prompt below.</p>
<label>Prompt</label>
<textarea id="prompt" placeholder="Include system text + user query..."></textarea>
<label>Max new tokens</label>
<input id="max_tokens" type="number" value="600" min="64" max="1024" step="16" />
<label>Temperature</label>
<input id="temperature" type="number" value="0.2" min="0" max="2" step="0.05" />
<label>Top-p</label>
<input id="top_p" type="number" value="0.9" min="0" max="1" step="0.05" />
<button onclick="callRouter()">Generate plan</button>
<h2>Response</h2>
<pre id="response">(waiting)</pre>
<script>
async function callRouter() {
const resp = await fetch("/v1/generate", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: document.getElementById("prompt").value,
max_new_tokens: Number(document.getElementById("max_tokens").value),
temperature: Number(document.getElementById("temperature").value),
top_p: Number(document.getElementById("top_p").value)
})
});
const json = await resp.json();
document.getElementById("response").textContent = JSON.stringify(json, null, 2);
}
</script>
</body>
</html>
"""
# Gradio interface for ZeroGPU detection - ZeroGPU requires Gradio SDK
import gradio as gr
@spaces.GPU(duration=300)
def gradio_generate(
prompt: str,
max_new_tokens: int = MAX_NEW_TOKENS,
temperature: float = DEFAULT_TEMPERATURE,
top_p: float = DEFAULT_TOP_P,
) -> str:
"""Gradio interface function with GPU decorator for ZeroGPU detection."""
return _generate(prompt, max_new_tokens, temperature, top_p)
# Create Gradio interface - this ensures ZeroGPU detects the GPU function
gradio_interface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Textbox(label="Prompt", lines=5, placeholder="Enter your router prompt here..."),
gr.Slider(minimum=64, maximum=2048, value=MAX_NEW_TOKENS, step=16, label="Max New Tokens"),
gr.Slider(minimum=0.0, maximum=2.0, value=DEFAULT_TEMPERATURE, step=0.05, label="Temperature"),
gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_TOP_P, step=0.05, label="Top-p"),
],
outputs=gr.Textbox(label="Generated Response", lines=10),
title="Router Model API - ZeroGPU",
description=f"Model: {MODEL_ID} | Strategy: {ACTIVE_STRATEGY or 'pending'}",
)
# Mount FastAPI app within Gradio for API endpoints
# The main app must be Gradio for ZeroGPU detection, with FastAPI mounted for API routes
app = gr.mount_gradio_app(fastapi_app, gradio_interface, path="/")
if __name__ == "__main__": # pragma: no cover
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|