Spaces:
Sleeping
Sleeping
Commit
·
e1bfb0a
1
Parent(s):
68a4a19
Intial config
Browse files
app.py
CHANGED
|
@@ -1,975 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
import queue
|
| 4 |
-
import torch
|
| 5 |
-
import time
|
| 6 |
-
import threading
|
| 7 |
-
import os
|
| 8 |
-
import urllib.request
|
| 9 |
-
import torchaudio
|
| 10 |
-
from scipy.spatial.distance import cosine
|
| 11 |
-
from scipy.signal import resample
|
| 12 |
-
from RealtimeSTT import AudioToTextRecorder
|
| 13 |
-
from fastapi import FastAPI, APIRouter
|
| 14 |
-
from fastrtc import Stream, AsyncStreamHandler
|
| 15 |
-
import json
|
| 16 |
-
import asyncio
|
| 17 |
-
import uvicorn
|
| 18 |
-
from queue import Queue
|
| 19 |
-
import logging
|
| 20 |
|
| 21 |
-
# Set up logging
|
| 22 |
-
logging.basicConfig(level=logging.INFO)
|
| 23 |
-
logger = logging.getLogger(__name__)
|
| 24 |
-
|
| 25 |
-
# Simplified configuration parameters
|
| 26 |
-
SILENCE_THRESHS = [0, 0.4]
|
| 27 |
-
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
| 28 |
-
FINAL_BEAM_SIZE = 5
|
| 29 |
-
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
| 30 |
-
REALTIME_BEAM_SIZE = 5
|
| 31 |
-
TRANSCRIPTION_LANGUAGE = "en"
|
| 32 |
-
SILERO_SENSITIVITY = 0.4
|
| 33 |
-
WEBRTC_SENSITIVITY = 3
|
| 34 |
-
MIN_LENGTH_OF_RECORDING = 0.7
|
| 35 |
-
PRE_RECORDING_BUFFER_DURATION = 0.35
|
| 36 |
-
|
| 37 |
-
# Speaker change detection parameters
|
| 38 |
-
DEFAULT_CHANGE_THRESHOLD = 0.65
|
| 39 |
-
EMBEDDING_HISTORY_SIZE = 5
|
| 40 |
-
MIN_SEGMENT_DURATION = 1.5
|
| 41 |
-
DEFAULT_MAX_SPEAKERS = 4
|
| 42 |
-
ABSOLUTE_MAX_SPEAKERS = 8
|
| 43 |
-
|
| 44 |
-
# Global variables
|
| 45 |
-
SAMPLE_RATE = 16000
|
| 46 |
-
BUFFER_SIZE = 1024
|
| 47 |
-
CHANNELS = 1
|
| 48 |
-
|
| 49 |
-
# Speaker colors - more distinguishable colors
|
| 50 |
-
SPEAKER_COLORS = [
|
| 51 |
-
"#FF6B6B", # Red
|
| 52 |
-
"#4ECDC4", # Teal
|
| 53 |
-
"#45B7D1", # Blue
|
| 54 |
-
"#96CEB4", # Green
|
| 55 |
-
"#FFEAA7", # Yellow
|
| 56 |
-
"#DDA0DD", # Plum
|
| 57 |
-
"#98D8C8", # Mint
|
| 58 |
-
"#F7DC6F", # Gold
|
| 59 |
-
]
|
| 60 |
-
|
| 61 |
-
SPEAKER_COLOR_NAMES = [
|
| 62 |
-
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
class SpeechBrainEncoder:
|
| 67 |
-
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
|
| 68 |
-
def __init__(self, device="cpu"):
|
| 69 |
-
self.device = device
|
| 70 |
-
self.model = None
|
| 71 |
-
self.embedding_dim = 192
|
| 72 |
-
self.model_loaded = False
|
| 73 |
-
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 74 |
-
os.makedirs(self.cache_dir, exist_ok=True)
|
| 75 |
-
|
| 76 |
-
def load_model(self):
|
| 77 |
-
"""Load the ECAPA-TDNN model"""
|
| 78 |
-
try:
|
| 79 |
-
# Import SpeechBrain
|
| 80 |
-
from speechbrain.pretrained import EncoderClassifier
|
| 81 |
-
|
| 82 |
-
# Get model path
|
| 83 |
-
model_path = self._download_model()
|
| 84 |
-
|
| 85 |
-
# Load the pre-trained model
|
| 86 |
-
self.model = EncoderClassifier.from_hparams(
|
| 87 |
-
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 88 |
-
savedir=self.cache_dir,
|
| 89 |
-
run_opts={"device": self.device}
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
self.model_loaded = True
|
| 93 |
-
return True
|
| 94 |
-
except Exception as e:
|
| 95 |
-
print(f"Error loading ECAPA-TDNN model: {e}")
|
| 96 |
-
return False
|
| 97 |
-
|
| 98 |
-
def embed_utterance(self, audio, sr=16000):
|
| 99 |
-
"""Extract speaker embedding from audio"""
|
| 100 |
-
if not self.model_loaded:
|
| 101 |
-
raise ValueError("Model not loaded. Call load_model() first.")
|
| 102 |
-
|
| 103 |
-
try:
|
| 104 |
-
if isinstance(audio, np.ndarray):
|
| 105 |
-
# Ensure audio is float32 and properly normalized
|
| 106 |
-
audio = audio.astype(np.float32)
|
| 107 |
-
if np.max(np.abs(audio)) > 1.0:
|
| 108 |
-
audio = audio / np.max(np.abs(audio))
|
| 109 |
-
waveform = torch.tensor(audio).unsqueeze(0)
|
| 110 |
-
else:
|
| 111 |
-
waveform = audio.unsqueeze(0)
|
| 112 |
-
|
| 113 |
-
# Resample if necessary
|
| 114 |
-
if sr != 16000:
|
| 115 |
-
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 116 |
-
|
| 117 |
-
with torch.no_grad():
|
| 118 |
-
embedding = self.model.encode_batch(waveform)
|
| 119 |
-
|
| 120 |
-
return embedding.squeeze().cpu().numpy()
|
| 121 |
-
except Exception as e:
|
| 122 |
-
logger.error(f"Error extracting embedding: {e}")
|
| 123 |
-
return np.zeros(self.embedding_dim)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
class AudioProcessor:
|
| 127 |
-
"""Processes audio data to extract speaker embeddings"""
|
| 128 |
-
def __init__(self, encoder):
|
| 129 |
-
self.encoder = encoder
|
| 130 |
-
self.audio_buffer = []
|
| 131 |
-
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
|
| 132 |
-
|
| 133 |
-
def add_audio_chunk(self, audio_chunk):
|
| 134 |
-
"""Add audio chunk to buffer"""
|
| 135 |
-
self.audio_buffer.extend(audio_chunk)
|
| 136 |
-
|
| 137 |
-
# Keep buffer from getting too large
|
| 138 |
-
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
|
| 139 |
-
if len(self.audio_buffer) > max_buffer_size:
|
| 140 |
-
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
|
| 141 |
-
|
| 142 |
-
def extract_embedding_from_buffer(self):
|
| 143 |
-
"""Extract embedding from current audio buffer"""
|
| 144 |
-
if len(self.audio_buffer) < self.min_audio_length:
|
| 145 |
-
return None
|
| 146 |
-
|
| 147 |
-
try:
|
| 148 |
-
# Use the last portion of the buffer for embedding
|
| 149 |
-
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
|
| 150 |
-
|
| 151 |
-
# Normalize audio
|
| 152 |
-
if np.max(np.abs(audio_segment)) > 0:
|
| 153 |
-
audio_segment = audio_segment / np.max(np.abs(audio_segment))
|
| 154 |
-
else:
|
| 155 |
-
return None
|
| 156 |
-
|
| 157 |
-
embedding = self.encoder.embed_utterance(audio_segment)
|
| 158 |
-
return embedding
|
| 159 |
-
except Exception as e:
|
| 160 |
-
logger.error(f"Embedding extraction error: {e}")
|
| 161 |
-
return None
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
class SpeakerChangeDetector:
|
| 165 |
-
"""Improved speaker change detector"""
|
| 166 |
-
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 167 |
-
self.embedding_dim = embedding_dim
|
| 168 |
-
self.change_threshold = change_threshold
|
| 169 |
-
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 170 |
-
self.current_speaker = 0
|
| 171 |
-
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
| 172 |
-
self.speaker_centroids = [None] * self.max_speakers
|
| 173 |
-
self.last_change_time = time.time()
|
| 174 |
-
self.last_similarity = 1.0
|
| 175 |
-
self.active_speakers = set([0])
|
| 176 |
-
self.segment_counter = 0
|
| 177 |
-
|
| 178 |
-
def set_max_speakers(self, max_speakers):
|
| 179 |
-
"""Update the maximum number of speakers"""
|
| 180 |
-
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 181 |
-
|
| 182 |
-
if new_max < self.max_speakers:
|
| 183 |
-
# Remove speakers beyond the new limit
|
| 184 |
-
for speaker_id in list(self.active_speakers):
|
| 185 |
-
if speaker_id >= new_max:
|
| 186 |
-
self.active_speakers.discard(speaker_id)
|
| 187 |
-
|
| 188 |
-
if self.current_speaker >= new_max:
|
| 189 |
-
self.current_speaker = 0
|
| 190 |
-
|
| 191 |
-
# Resize arrays
|
| 192 |
-
if new_max > self.max_speakers:
|
| 193 |
-
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
| 194 |
-
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
|
| 195 |
-
else:
|
| 196 |
-
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
| 197 |
-
self.speaker_centroids = self.speaker_centroids[:new_max]
|
| 198 |
-
|
| 199 |
-
self.max_speakers = new_max
|
| 200 |
-
|
| 201 |
-
def set_change_threshold(self, threshold):
|
| 202 |
-
"""Update the threshold for detecting speaker changes"""
|
| 203 |
-
self.change_threshold = max(0.1, min(threshold, 0.95))
|
| 204 |
-
|
| 205 |
-
def add_embedding(self, embedding, timestamp=None):
|
| 206 |
-
"""Add a new embedding and detect speaker changes"""
|
| 207 |
-
current_time = timestamp or time.time()
|
| 208 |
-
self.segment_counter += 1
|
| 209 |
-
|
| 210 |
-
# Initialize first speaker
|
| 211 |
-
if not self.speaker_embeddings[0]:
|
| 212 |
-
self.speaker_embeddings[0].append(embedding)
|
| 213 |
-
self.speaker_centroids[0] = embedding.copy()
|
| 214 |
-
self.active_speakers.add(0)
|
| 215 |
-
return 0, 1.0
|
| 216 |
-
|
| 217 |
-
# Calculate similarity with current speaker
|
| 218 |
-
current_centroid = self.speaker_centroids[self.current_speaker]
|
| 219 |
-
if current_centroid is not None:
|
| 220 |
-
similarity = 1.0 - cosine(embedding, current_centroid)
|
| 221 |
-
else:
|
| 222 |
-
similarity = 0.5
|
| 223 |
-
|
| 224 |
-
self.last_similarity = similarity
|
| 225 |
-
|
| 226 |
-
# Check for speaker change
|
| 227 |
-
time_since_last_change = current_time - self.last_change_time
|
| 228 |
-
speaker_changed = False
|
| 229 |
-
|
| 230 |
-
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
|
| 231 |
-
# Find best matching speaker
|
| 232 |
-
best_speaker = self.current_speaker
|
| 233 |
-
best_similarity = similarity
|
| 234 |
-
|
| 235 |
-
for speaker_id in self.active_speakers:
|
| 236 |
-
if speaker_id == self.current_speaker:
|
| 237 |
-
continue
|
| 238 |
-
|
| 239 |
-
centroid = self.speaker_centroids[speaker_id]
|
| 240 |
-
if centroid is not None:
|
| 241 |
-
speaker_similarity = 1.0 - cosine(embedding, centroid)
|
| 242 |
-
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
|
| 243 |
-
best_similarity = speaker_similarity
|
| 244 |
-
best_speaker = speaker_id
|
| 245 |
-
|
| 246 |
-
# If no good match found and we can add a new speaker
|
| 247 |
-
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
|
| 248 |
-
for new_id in range(self.max_speakers):
|
| 249 |
-
if new_id not in self.active_speakers:
|
| 250 |
-
best_speaker = new_id
|
| 251 |
-
self.active_speakers.add(new_id)
|
| 252 |
-
break
|
| 253 |
-
|
| 254 |
-
if best_speaker != self.current_speaker:
|
| 255 |
-
self.current_speaker = best_speaker
|
| 256 |
-
self.last_change_time = current_time
|
| 257 |
-
speaker_changed = True
|
| 258 |
-
|
| 259 |
-
# Update speaker embeddings and centroids
|
| 260 |
-
self.speaker_embeddings[self.current_speaker].append(embedding)
|
| 261 |
-
|
| 262 |
-
# Keep only recent embeddings (sliding window)
|
| 263 |
-
max_embeddings = 20
|
| 264 |
-
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
|
| 265 |
-
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
|
| 266 |
-
|
| 267 |
-
# Update centroid
|
| 268 |
-
if self.speaker_embeddings[self.current_speaker]:
|
| 269 |
-
self.speaker_centroids[self.current_speaker] = np.mean(
|
| 270 |
-
self.speaker_embeddings[self.current_speaker], axis=0
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
return self.current_speaker, similarity
|
| 274 |
-
|
| 275 |
-
def get_color_for_speaker(self, speaker_id):
|
| 276 |
-
"""Return color for speaker ID"""
|
| 277 |
-
if 0 <= speaker_id < len(SPEAKER_COLORS):
|
| 278 |
-
return SPEAKER_COLORS[speaker_id]
|
| 279 |
-
return "#FFFFFF"
|
| 280 |
-
|
| 281 |
-
def get_status_info(self):
|
| 282 |
-
"""Return status information"""
|
| 283 |
-
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 284 |
-
|
| 285 |
-
return {
|
| 286 |
-
"current_speaker": self.current_speaker,
|
| 287 |
-
"speaker_counts": speaker_counts,
|
| 288 |
-
"active_speakers": len(self.active_speakers),
|
| 289 |
-
"max_speakers": self.max_speakers,
|
| 290 |
-
"last_similarity": self.last_similarity,
|
| 291 |
-
"threshold": self.change_threshold,
|
| 292 |
-
"segment_counter": self.segment_counter
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
class RealtimeSpeakerDiarization:
|
| 297 |
-
def __init__(self):
|
| 298 |
-
self.encoder = None
|
| 299 |
-
self.audio_processor = None
|
| 300 |
-
self.speaker_detector = None
|
| 301 |
-
self.recorder = None
|
| 302 |
-
self.sentence_queue = queue.Queue()
|
| 303 |
-
self.full_sentences = []
|
| 304 |
-
self.sentence_speakers = []
|
| 305 |
-
self.pending_sentences = []
|
| 306 |
-
self.current_conversation = ""
|
| 307 |
-
self.is_running = False
|
| 308 |
-
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 309 |
-
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 310 |
-
self.last_transcription = ""
|
| 311 |
-
self.transcription_lock = threading.Lock()
|
| 312 |
-
|
| 313 |
-
def initialize_models(self):
|
| 314 |
-
"""Initialize the speaker encoder model"""
|
| 315 |
-
try:
|
| 316 |
-
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 317 |
-
logger.info(f"Using device: {device_str}")
|
| 318 |
-
|
| 319 |
-
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 320 |
-
success = self.encoder.load_model()
|
| 321 |
-
|
| 322 |
-
if success:
|
| 323 |
-
self.audio_processor = AudioProcessor(self.encoder)
|
| 324 |
-
self.speaker_detector = SpeakerChangeDetector(
|
| 325 |
-
embedding_dim=self.encoder.embedding_dim,
|
| 326 |
-
change_threshold=self.change_threshold,
|
| 327 |
-
max_speakers=self.max_speakers
|
| 328 |
-
)
|
| 329 |
-
logger.info("Models initialized successfully!")
|
| 330 |
-
return True
|
| 331 |
-
else:
|
| 332 |
-
logger.error("Failed to load models")
|
| 333 |
-
return False
|
| 334 |
-
except Exception as e:
|
| 335 |
-
logger.error(f"Model initialization error: {e}")
|
| 336 |
-
return False
|
| 337 |
-
|
| 338 |
-
def live_text_detected(self, text):
|
| 339 |
-
"""Callback for real-time transcription updates"""
|
| 340 |
-
with self.transcription_lock:
|
| 341 |
-
self.last_transcription = text.strip()
|
| 342 |
-
|
| 343 |
-
def process_final_text(self, text):
|
| 344 |
-
"""Process final transcribed text with speaker embedding"""
|
| 345 |
-
text = text.strip()
|
| 346 |
-
if text:
|
| 347 |
-
try:
|
| 348 |
-
# Get audio data for this transcription
|
| 349 |
-
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
|
| 350 |
-
if audio_bytes:
|
| 351 |
-
self.sentence_queue.put((text, audio_bytes))
|
| 352 |
-
else:
|
| 353 |
-
# If no audio bytes, use current speaker
|
| 354 |
-
self.sentence_queue.put((text, None))
|
| 355 |
-
|
| 356 |
-
except Exception as e:
|
| 357 |
-
logger.error(f"Error processing final text: {e}")
|
| 358 |
-
|
| 359 |
-
def process_sentence_queue(self):
|
| 360 |
-
"""Process sentences in the queue for speaker detection"""
|
| 361 |
-
while self.is_running:
|
| 362 |
-
try:
|
| 363 |
-
text, audio_bytes = self.sentence_queue.get(timeout=1)
|
| 364 |
-
|
| 365 |
-
current_speaker = self.speaker_detector.current_speaker
|
| 366 |
-
|
| 367 |
-
if audio_bytes:
|
| 368 |
-
# Convert audio data and extract embedding
|
| 369 |
-
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 370 |
-
audio_float = audio_int16.astype(np.float32) / 32768.0
|
| 371 |
-
|
| 372 |
-
# Extract embedding
|
| 373 |
-
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
|
| 374 |
-
if embedding is not None:
|
| 375 |
-
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
|
| 376 |
-
|
| 377 |
-
# Store sentence with speaker
|
| 378 |
-
with self.transcription_lock:
|
| 379 |
-
self.full_sentences.append((text, current_speaker))
|
| 380 |
-
self.update_conversation_display()
|
| 381 |
-
|
| 382 |
-
except queue.Empty:
|
| 383 |
-
continue
|
| 384 |
-
except Exception as e:
|
| 385 |
-
logger.error(f"Error processing sentence: {e}")
|
| 386 |
-
|
| 387 |
-
def update_conversation_display(self):
|
| 388 |
-
"""Update the conversation display"""
|
| 389 |
-
try:
|
| 390 |
-
sentences_with_style = []
|
| 391 |
-
|
| 392 |
-
for sentence_text, speaker_id in self.full_sentences:
|
| 393 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 394 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
| 395 |
-
sentences_with_style.append(
|
| 396 |
-
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
|
| 397 |
-
f'<span style="color:#333333;">{sentence_text}</span>'
|
| 398 |
-
)
|
| 399 |
-
|
| 400 |
-
# Add current transcription if available
|
| 401 |
-
if self.last_transcription:
|
| 402 |
-
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
|
| 403 |
-
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
|
| 404 |
-
sentences_with_style.append(
|
| 405 |
-
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
|
| 406 |
-
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
|
| 407 |
-
)
|
| 408 |
-
|
| 409 |
-
if sentences_with_style:
|
| 410 |
-
self.current_conversation = "<br><br>".join(sentences_with_style)
|
| 411 |
-
else:
|
| 412 |
-
self.current_conversation = "<i>Waiting for speech input...</i>"
|
| 413 |
-
|
| 414 |
-
except Exception as e:
|
| 415 |
-
logger.error(f"Error updating conversation display: {e}")
|
| 416 |
-
self.current_conversation = f"<i>Error: {str(e)}</i>"
|
| 417 |
-
|
| 418 |
-
def start_recording(self):
|
| 419 |
-
"""Start the recording and transcription process"""
|
| 420 |
-
if self.encoder is None:
|
| 421 |
-
return "Please initialize models first!"
|
| 422 |
-
|
| 423 |
-
try:
|
| 424 |
-
# Setup recorder configuration
|
| 425 |
-
recorder_config = {
|
| 426 |
-
'spinner': False,
|
| 427 |
-
'use_microphone': False, # Using FastRTC for audio input
|
| 428 |
-
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 429 |
-
'language': TRANSCRIPTION_LANGUAGE,
|
| 430 |
-
'silero_sensitivity': SILERO_SENSITIVITY,
|
| 431 |
-
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
| 432 |
-
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
| 433 |
-
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
| 434 |
-
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 435 |
-
'min_gap_between_recordings': 0,
|
| 436 |
-
'enable_realtime_transcription': True,
|
| 437 |
-
'realtime_processing_pause': 0.1,
|
| 438 |
-
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 439 |
-
'on_realtime_transcription_update': self.live_text_detected,
|
| 440 |
-
'beam_size': FINAL_BEAM_SIZE,
|
| 441 |
-
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 442 |
-
'sample_rate': SAMPLE_RATE,
|
| 443 |
-
}
|
| 444 |
-
|
| 445 |
-
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 446 |
-
|
| 447 |
-
# Start processing threads
|
| 448 |
-
self.is_running = True
|
| 449 |
-
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 450 |
-
self.sentence_thread.start()
|
| 451 |
-
|
| 452 |
-
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 453 |
-
self.transcription_thread.start()
|
| 454 |
-
|
| 455 |
-
return "Recording started successfully!"
|
| 456 |
-
|
| 457 |
-
except Exception as e:
|
| 458 |
-
logger.error(f"Error starting recording: {e}")
|
| 459 |
-
return f"Error starting recording: {e}"
|
| 460 |
-
|
| 461 |
-
def run_transcription(self):
|
| 462 |
-
"""Run the transcription loop"""
|
| 463 |
-
try:
|
| 464 |
-
logger.info("Starting transcription thread")
|
| 465 |
-
while self.is_running:
|
| 466 |
-
# Just check for final text from recorder, audio is fed externally via FastRTC
|
| 467 |
-
text = self.recorder.text(self.process_final_text)
|
| 468 |
-
time.sleep(0.01) # Small sleep to prevent CPU hogging
|
| 469 |
-
except Exception as e:
|
| 470 |
-
logger.error(f"Transcription error: {e}")
|
| 471 |
-
|
| 472 |
-
def stop_recording(self):
|
| 473 |
-
"""Stop the recording process"""
|
| 474 |
-
self.is_running = False
|
| 475 |
-
if self.recorder:
|
| 476 |
-
self.recorder.stop()
|
| 477 |
-
return "Recording stopped!"
|
| 478 |
-
|
| 479 |
-
def clear_conversation(self):
|
| 480 |
-
"""Clear all conversation data"""
|
| 481 |
-
with self.transcription_lock:
|
| 482 |
-
self.full_sentences = []
|
| 483 |
-
self.last_transcription = ""
|
| 484 |
-
self.current_conversation = "Conversation cleared!"
|
| 485 |
-
|
| 486 |
-
if self.speaker_detector:
|
| 487 |
-
self.speaker_detector = SpeakerChangeDetector(
|
| 488 |
-
embedding_dim=self.encoder.embedding_dim,
|
| 489 |
-
change_threshold=self.change_threshold,
|
| 490 |
-
max_speakers=self.max_speakers
|
| 491 |
-
)
|
| 492 |
-
|
| 493 |
-
return "Conversation cleared!"
|
| 494 |
-
|
| 495 |
-
def update_settings(self, threshold, max_speakers):
|
| 496 |
-
"""Update speaker detection settings"""
|
| 497 |
-
self.change_threshold = threshold
|
| 498 |
-
self.max_speakers = max_speakers
|
| 499 |
-
|
| 500 |
-
if self.speaker_detector:
|
| 501 |
-
self.speaker_detector.set_change_threshold(threshold)
|
| 502 |
-
self.speaker_detector.set_max_speakers(max_speakers)
|
| 503 |
-
|
| 504 |
-
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 505 |
-
|
| 506 |
-
def get_formatted_conversation(self):
|
| 507 |
-
"""Get the formatted conversation"""
|
| 508 |
-
return self.current_conversation
|
| 509 |
-
|
| 510 |
-
def get_status_info(self):
|
| 511 |
-
"""Get current status information"""
|
| 512 |
-
if not self.speaker_detector:
|
| 513 |
-
return "Speaker detector not initialized"
|
| 514 |
-
|
| 515 |
-
try:
|
| 516 |
-
status = self.speaker_detector.get_status_info()
|
| 517 |
-
|
| 518 |
-
status_lines = [
|
| 519 |
-
f"**Current Speaker:** {status['current_speaker'] + 1}",
|
| 520 |
-
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
|
| 521 |
-
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 522 |
-
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 523 |
-
f"**Total Sentences:** {len(self.full_sentences)}",
|
| 524 |
-
f"**Segments Processed:** {status['segment_counter']}",
|
| 525 |
-
"",
|
| 526 |
-
"**Speaker Activity:**"
|
| 527 |
-
]
|
| 528 |
-
|
| 529 |
-
for i in range(status['max_speakers']):
|
| 530 |
-
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 531 |
-
count = status['speaker_counts'][i]
|
| 532 |
-
active = "🟢" if count > 0 else "⚫"
|
| 533 |
-
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments")
|
| 534 |
-
|
| 535 |
-
return "\n".join(status_lines)
|
| 536 |
-
|
| 537 |
-
except Exception as e:
|
| 538 |
-
return f"Error getting status: {e}"
|
| 539 |
-
|
| 540 |
-
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 541 |
-
"""Process audio chunk from FastRTC input"""
|
| 542 |
-
if not self.is_running or self.audio_processor is None:
|
| 543 |
-
return
|
| 544 |
-
|
| 545 |
-
try:
|
| 546 |
-
# Ensure audio is float32
|
| 547 |
-
if isinstance(audio_data, np.ndarray):
|
| 548 |
-
if audio_data.dtype != np.float32:
|
| 549 |
-
audio_data = audio_data.astype(np.float32)
|
| 550 |
-
else:
|
| 551 |
-
audio_data = np.array(audio_data, dtype=np.float32)
|
| 552 |
-
|
| 553 |
-
# Ensure mono
|
| 554 |
-
if len(audio_data.shape) > 1:
|
| 555 |
-
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
|
| 556 |
-
|
| 557 |
-
# Normalize if needed
|
| 558 |
-
if np.max(np.abs(audio_data)) > 1.0:
|
| 559 |
-
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 560 |
-
|
| 561 |
-
# Add to audio processor buffer for speaker detection
|
| 562 |
-
self.audio_processor.add_audio_chunk(audio_data)
|
| 563 |
-
|
| 564 |
-
# Periodically extract embeddings for speaker detection
|
| 565 |
-
if len(self.audio_processor.audio_buffer) % (SAMPLE_RATE // 2) == 0: # Every 0.5 seconds
|
| 566 |
-
embedding = self.audio_processor.extract_embedding_from_buffer()
|
| 567 |
-
if embedding is not None:
|
| 568 |
-
self.speaker_detector.add_embedding(embedding)
|
| 569 |
-
|
| 570 |
-
# Feed audio to RealtimeSTT recorder
|
| 571 |
-
if self.recorder and self.is_running:
|
| 572 |
-
# Convert float32 [-1.0, 1.0] to int16 for RealtimeSTT
|
| 573 |
-
int16_data = (audio_data * 32768.0).astype(np.int16).tobytes()
|
| 574 |
-
if sample_rate != 16000:
|
| 575 |
-
int16_data = self.resample_audio(int16_data, sample_rate, 16000)
|
| 576 |
-
self.recorder.feed_audio(int16_data)
|
| 577 |
-
|
| 578 |
-
except Exception as e:
|
| 579 |
-
logger.error(f"Error processing audio chunk: {e}")
|
| 580 |
-
|
| 581 |
-
def resample_audio(self, audio_bytes, from_rate, to_rate):
|
| 582 |
-
"""Resample audio to target sample rate"""
|
| 583 |
-
try:
|
| 584 |
-
audio_np = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 585 |
-
num_samples = len(audio_np)
|
| 586 |
-
num_target_samples = int(num_samples * to_rate / from_rate)
|
| 587 |
-
|
| 588 |
-
resampled = resample(audio_np, num_target_samples)
|
| 589 |
-
|
| 590 |
-
return resampled.astype(np.int16).tobytes()
|
| 591 |
-
except Exception as e:
|
| 592 |
-
logger.error(f"Error resampling audio: {e}")
|
| 593 |
-
return audio_bytes
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
# FastRTC Audio Handler
|
| 597 |
-
class DiarizationHandler(AsyncStreamHandler):
|
| 598 |
-
def __init__(self, diarization_system):
|
| 599 |
-
super().__init__()
|
| 600 |
-
self.diarization_system = diarization_system
|
| 601 |
-
self.audio_buffer = []
|
| 602 |
-
self.buffer_size = BUFFER_SIZE
|
| 603 |
-
|
| 604 |
-
def copy(self):
|
| 605 |
-
"""Return a fresh handler for each new stream connection"""
|
| 606 |
-
return DiarizationHandler(self.diarization_system)
|
| 607 |
-
|
| 608 |
-
async def emit(self):
|
| 609 |
-
"""Not used - we only receive audio"""
|
| 610 |
-
return None
|
| 611 |
-
|
| 612 |
-
async def receive(self, frame):
|
| 613 |
-
"""Receive audio data from FastRTC"""
|
| 614 |
-
try:
|
| 615 |
-
if not self.diarization_system.is_running:
|
| 616 |
-
return
|
| 617 |
-
|
| 618 |
-
# Extract audio data
|
| 619 |
-
audio_data = getattr(frame, 'data', frame)
|
| 620 |
-
|
| 621 |
-
# Convert to numpy array
|
| 622 |
-
if isinstance(audio_data, bytes):
|
| 623 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
| 624 |
-
elif isinstance(audio_data, (list, tuple)):
|
| 625 |
-
sample_rate, audio_array = audio_data
|
| 626 |
-
if isinstance(audio_array, (list, tuple)):
|
| 627 |
-
audio_array = np.array(audio_array, dtype=np.float32)
|
| 628 |
-
else:
|
| 629 |
-
audio_array = np.array(audio_data, dtype=np.float32)
|
| 630 |
-
|
| 631 |
-
# Ensure 1D
|
| 632 |
-
if len(audio_array.shape) > 1:
|
| 633 |
-
audio_array = audio_array.flatten()
|
| 634 |
-
|
| 635 |
-
# Buffer audio chunks
|
| 636 |
-
self.audio_buffer.extend(audio_array)
|
| 637 |
-
|
| 638 |
-
# Process in chunks
|
| 639 |
-
while len(self.audio_buffer) >= self.buffer_size:
|
| 640 |
-
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
| 641 |
-
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
| 642 |
-
|
| 643 |
-
# Process asynchronously
|
| 644 |
-
await self.process_audio_async(chunk)
|
| 645 |
-
|
| 646 |
-
except Exception as e:
|
| 647 |
-
logger.error(f"Error in FastRTC receive: {e}")
|
| 648 |
-
|
| 649 |
-
async def process_audio_async(self, audio_data):
|
| 650 |
-
"""Process audio data asynchronously"""
|
| 651 |
-
try:
|
| 652 |
-
loop = asyncio.get_event_loop()
|
| 653 |
-
await loop.run_in_executor(
|
| 654 |
-
None,
|
| 655 |
-
self.diarization_system.process_audio_chunk,
|
| 656 |
-
audio_data,
|
| 657 |
-
SAMPLE_RATE
|
| 658 |
-
)
|
| 659 |
-
except Exception as e:
|
| 660 |
-
logger.error(f"Error in async audio processing: {e}")
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
# Global instances
|
| 664 |
-
diarization_system = RealtimeSpeakerDiarization()
|
| 665 |
-
audio_handler = None
|
| 666 |
-
|
| 667 |
-
def initialize_system():
|
| 668 |
-
"""Initialize the diarization system"""
|
| 669 |
-
global audio_handler
|
| 670 |
-
try:
|
| 671 |
-
success = diarization_system.initialize_models()
|
| 672 |
-
if success:
|
| 673 |
-
audio_handler = DiarizationHandler(diarization_system)
|
| 674 |
-
return "✅ System initialized successfully!"
|
| 675 |
-
else:
|
| 676 |
-
return "❌ Failed to initialize system. Check logs for details."
|
| 677 |
-
except Exception as e:
|
| 678 |
-
logger.error(f"Initialization error: {e}")
|
| 679 |
-
return f"❌ Initialization error: {str(e)}"
|
| 680 |
-
|
| 681 |
-
def start_recording():
|
| 682 |
-
"""Start recording and transcription"""
|
| 683 |
-
try:
|
| 684 |
-
result = diarization_system.start_recording()
|
| 685 |
-
return f"🎙️ {result}"
|
| 686 |
-
except Exception as e:
|
| 687 |
-
return f"❌ Failed to start recording: {str(e)}"
|
| 688 |
-
|
| 689 |
-
def stop_recording():
|
| 690 |
-
"""Stop recording and transcription"""
|
| 691 |
-
try:
|
| 692 |
-
result = diarization_system.stop_recording()
|
| 693 |
-
return f"⏹️ {result}"
|
| 694 |
-
except Exception as e:
|
| 695 |
-
return f"❌ Failed to stop recording: {str(e)}"
|
| 696 |
-
|
| 697 |
-
def clear_conversation():
|
| 698 |
-
"""Clear the conversation"""
|
| 699 |
-
try:
|
| 700 |
-
result = diarization_system.clear_conversation()
|
| 701 |
-
return f"🗑️ {result}"
|
| 702 |
-
except Exception as e:
|
| 703 |
-
return f"❌ Failed to clear conversation: {str(e)}"
|
| 704 |
-
|
| 705 |
-
def update_settings(threshold, max_speakers):
|
| 706 |
-
"""Update system settings"""
|
| 707 |
-
try:
|
| 708 |
-
result = diarization_system.update_settings(threshold, max_speakers)
|
| 709 |
-
return f"⚙️ {result}"
|
| 710 |
-
except Exception as e:
|
| 711 |
-
return f"❌ Failed to update settings: {str(e)}"
|
| 712 |
-
|
| 713 |
-
def get_conversation():
|
| 714 |
-
"""Get the current conversation"""
|
| 715 |
-
try:
|
| 716 |
-
return diarization_system.get_formatted_conversation()
|
| 717 |
-
except Exception as e:
|
| 718 |
-
return f"<i>Error getting conversation: {str(e)}</i>"
|
| 719 |
-
|
| 720 |
-
def get_status():
|
| 721 |
-
"""Get system status"""
|
| 722 |
-
try:
|
| 723 |
-
return diarization_system.get_status_info()
|
| 724 |
-
except Exception as e:
|
| 725 |
-
return f"Error getting status: {str(e)}"
|
| 726 |
-
|
| 727 |
-
# Create Gradio interface
|
| 728 |
-
def create_interface():
|
| 729 |
-
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
| 730 |
-
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
| 731 |
-
gr.Markdown("Live transcription with automatic speaker identification using FastRTC audio streaming.")
|
| 732 |
-
|
| 733 |
-
with gr.Row():
|
| 734 |
-
with gr.Column(scale=2):
|
| 735 |
-
# Conversation display
|
| 736 |
-
conversation_output = gr.HTML(
|
| 737 |
-
value="<div style='padding: 20px; background: #f8f9fa; border-radius: 10px; min-height: 300px;'><i>Click 'Initialize System' to start...</i></div>",
|
| 738 |
-
label="Live Conversation"
|
| 739 |
-
)
|
| 740 |
-
|
| 741 |
-
# Control buttons
|
| 742 |
-
with gr.Row():
|
| 743 |
-
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 744 |
-
start_btn = gr.Button("🎙️ Start", variant="primary", size="lg", interactive=False)
|
| 745 |
-
stop_btn = gr.Button("⏹️ Stop", variant="stop", size="lg", interactive=False)
|
| 746 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
| 747 |
-
|
| 748 |
-
# Status display
|
| 749 |
-
status_output = gr.Textbox(
|
| 750 |
-
label="System Status",
|
| 751 |
-
value="Ready to initialize...",
|
| 752 |
-
lines=8,
|
| 753 |
-
interactive=False
|
| 754 |
-
)
|
| 755 |
-
|
| 756 |
-
with gr.Column(scale=1):
|
| 757 |
-
# Settings
|
| 758 |
-
gr.Markdown("## ⚙️ Settings")
|
| 759 |
-
|
| 760 |
-
threshold_slider = gr.Slider(
|
| 761 |
-
minimum=0.3,
|
| 762 |
-
maximum=0.9,
|
| 763 |
-
step=0.05,
|
| 764 |
-
value=DEFAULT_CHANGE_THRESHOLD,
|
| 765 |
-
label="Speaker Change Sensitivity",
|
| 766 |
-
info="Lower = more sensitive"
|
| 767 |
-
)
|
| 768 |
-
|
| 769 |
-
max_speakers_slider = gr.Slider(
|
| 770 |
-
minimum=2,
|
| 771 |
-
maximum=ABSOLUTE_MAX_SPEAKERS,
|
| 772 |
-
step=1,
|
| 773 |
-
value=DEFAULT_MAX_SPEAKERS,
|
| 774 |
-
label="Maximum Speakers"
|
| 775 |
-
)
|
| 776 |
-
|
| 777 |
-
update_btn = gr.Button("Update Settings", variant="secondary")
|
| 778 |
-
|
| 779 |
-
# Instructions
|
| 780 |
-
gr.Markdown("""
|
| 781 |
-
## 📋 Instructions
|
| 782 |
-
1. **Initialize** the system (loads AI models)
|
| 783 |
-
2. **Start** recording
|
| 784 |
-
3. **Speak** - system will transcribe and identify speakers
|
| 785 |
-
4. **Monitor** real-time results below
|
| 786 |
-
|
| 787 |
-
## 🎨 Speaker Colors
|
| 788 |
-
- 🔴 Speaker 1 (Red)
|
| 789 |
-
- 🟢 Speaker 2 (Teal)
|
| 790 |
-
- 🔵 Speaker 3 (Blue)
|
| 791 |
-
- 🟡 Speaker 4 (Green)
|
| 792 |
-
- 🟣 Speaker 5 (Yellow)
|
| 793 |
-
- 🟤 Speaker 6 (Plum)
|
| 794 |
-
- 🟫 Speaker 7 (Mint)
|
| 795 |
-
- 🟨 Speaker 8 (Gold)
|
| 796 |
-
""")
|
| 797 |
-
|
| 798 |
-
# Event handlers
|
| 799 |
-
def on_initialize():
|
| 800 |
-
result = initialize_system()
|
| 801 |
-
if "✅" in result:
|
| 802 |
-
return result, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
| 803 |
-
else:
|
| 804 |
-
return result, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
| 805 |
-
|
| 806 |
-
def on_start():
|
| 807 |
-
result = start_recording()
|
| 808 |
-
return result, gr.update(interactive=False), gr.update(interactive=True)
|
| 809 |
-
|
| 810 |
-
def on_stop():
|
| 811 |
-
result = stop_recording()
|
| 812 |
-
return result, gr.update(interactive=True), gr.update(interactive=False)
|
| 813 |
-
|
| 814 |
-
def on_clear():
|
| 815 |
-
result = clear_conversation()
|
| 816 |
-
return result
|
| 817 |
-
|
| 818 |
-
def on_update_settings(threshold, max_speakers):
|
| 819 |
-
result = update_settings(threshold, int(max_speakers))
|
| 820 |
-
return result
|
| 821 |
-
|
| 822 |
-
def refresh_conversation():
|
| 823 |
-
return get_conversation()
|
| 824 |
-
|
| 825 |
-
def refresh_status():
|
| 826 |
-
return get_status()
|
| 827 |
-
|
| 828 |
-
# Button click handlers
|
| 829 |
-
init_btn.click(
|
| 830 |
-
fn=on_initialize,
|
| 831 |
-
outputs=[status_output, start_btn, stop_btn, clear_btn]
|
| 832 |
-
)
|
| 833 |
-
|
| 834 |
-
start_btn.click(
|
| 835 |
-
fn=on_start,
|
| 836 |
-
outputs=[status_output, start_btn, stop_btn]
|
| 837 |
-
)
|
| 838 |
-
|
| 839 |
-
stop_btn.click(
|
| 840 |
-
fn=on_stop,
|
| 841 |
-
outputs=[status_output, start_btn, stop_btn]
|
| 842 |
-
)
|
| 843 |
-
|
| 844 |
-
clear_btn.click(
|
| 845 |
-
fn=on_clear,
|
| 846 |
-
outputs=[status_output]
|
| 847 |
-
)
|
| 848 |
-
|
| 849 |
-
update_btn.click(
|
| 850 |
-
fn=on_update_settings,
|
| 851 |
-
inputs=[threshold_slider, max_speakers_slider],
|
| 852 |
-
outputs=[status_output]
|
| 853 |
-
)
|
| 854 |
-
|
| 855 |
-
# Auto-refresh conversation display every 1 second
|
| 856 |
-
conversation_timer = gr.Timer(1)
|
| 857 |
-
conversation_timer.tick(refresh_conversation, outputs=[conversation_output])
|
| 858 |
-
|
| 859 |
-
# Auto-refresh status every 2 seconds
|
| 860 |
-
status_timer = gr.Timer(2)
|
| 861 |
-
status_timer.tick(refresh_status, outputs=[status_output])
|
| 862 |
-
|
| 863 |
-
return interface
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
# FastAPI setup for FastRTC integration
|
| 867 |
app = FastAPI()
|
| 868 |
|
| 869 |
@app.get("/")
|
| 870 |
-
|
| 871 |
-
return {"
|
| 872 |
-
|
| 873 |
-
@app.get("/health")
|
| 874 |
-
async def health_check():
|
| 875 |
-
return {"status": "healthy", "system_running": diarization_system.is_running}
|
| 876 |
-
|
| 877 |
-
@app.post("/initialize")
|
| 878 |
-
async def api_initialize():
|
| 879 |
-
result = initialize_system()
|
| 880 |
-
return {"result": result, "success": "✅" in result}
|
| 881 |
-
|
| 882 |
-
@app.post("/start")
|
| 883 |
-
async def api_start():
|
| 884 |
-
result = start_recording()
|
| 885 |
-
return {"result": result, "success": "🎙️" in result}
|
| 886 |
-
|
| 887 |
-
@app.post("/stop")
|
| 888 |
-
async def api_stop():
|
| 889 |
-
result = stop_recording()
|
| 890 |
-
return {"result": result, "success": "⏹️" in result}
|
| 891 |
-
|
| 892 |
-
@app.post("/clear")
|
| 893 |
-
async def api_clear():
|
| 894 |
-
result = clear_conversation()
|
| 895 |
-
return {"result": result}
|
| 896 |
-
|
| 897 |
-
@app.get("/conversation")
|
| 898 |
-
async def api_get_conversation():
|
| 899 |
-
return {"conversation": get_conversation()}
|
| 900 |
-
|
| 901 |
-
@app.get("/status")
|
| 902 |
-
async def api_get_status():
|
| 903 |
-
return {"status": get_status()}
|
| 904 |
-
|
| 905 |
-
@app.post("/settings")
|
| 906 |
-
async def api_update_settings(threshold: float, max_speakers: int):
|
| 907 |
-
result = update_settings(threshold, max_speakers)
|
| 908 |
-
return {"result": result}
|
| 909 |
-
|
| 910 |
-
# FastRTC Stream setup
|
| 911 |
-
if audio_handler:
|
| 912 |
-
stream = Stream(handler=audio_handler)
|
| 913 |
-
app.include_router(stream.router, prefix="/stream")
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
# Main execution
|
| 917 |
-
if __name__ == "__main__":
|
| 918 |
-
import argparse
|
| 919 |
-
|
| 920 |
-
parser = argparse.ArgumentParser(description="Real-time Speaker Diarization System")
|
| 921 |
-
parser.add_argument("--mode", choices=["gradio", "api", "both"], default="gradio",
|
| 922 |
-
help="Run mode: gradio interface, API only, or both")
|
| 923 |
-
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to")
|
| 924 |
-
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
|
| 925 |
-
parser.add_argument("--api-port", type=int, default=8000, help="API port (when running both)")
|
| 926 |
-
|
| 927 |
-
args = parser.parse_args()
|
| 928 |
-
|
| 929 |
-
if args.mode == "gradio":
|
| 930 |
-
# Run Gradio interface only
|
| 931 |
-
interface = create_interface()
|
| 932 |
-
interface.launch(
|
| 933 |
-
server_name=args.host,
|
| 934 |
-
server_port=args.port,
|
| 935 |
-
share=True,
|
| 936 |
-
show_error=True
|
| 937 |
-
)
|
| 938 |
-
|
| 939 |
-
elif args.mode == "api":
|
| 940 |
-
# Run FastAPI only
|
| 941 |
-
uvicorn.run(
|
| 942 |
-
app,
|
| 943 |
-
host=args.host,
|
| 944 |
-
port=args.port,
|
| 945 |
-
log_level="info"
|
| 946 |
-
)
|
| 947 |
-
|
| 948 |
-
elif args.mode == "both":
|
| 949 |
-
# Run both Gradio and FastAPI
|
| 950 |
-
import multiprocessing
|
| 951 |
-
import threading
|
| 952 |
-
|
| 953 |
-
def run_gradio():
|
| 954 |
-
interface = create_interface()
|
| 955 |
-
interface.launch(
|
| 956 |
-
server_name=args.host,
|
| 957 |
-
server_port=args.port,
|
| 958 |
-
share=True,
|
| 959 |
-
show_error=True
|
| 960 |
-
)
|
| 961 |
-
|
| 962 |
-
def run_fastapi():
|
| 963 |
-
uvicorn.run(
|
| 964 |
-
app,
|
| 965 |
-
host=args.host,
|
| 966 |
-
port=args.api_port,
|
| 967 |
-
log_level="info"
|
| 968 |
-
)
|
| 969 |
-
|
| 970 |
-
# Start FastAPI in a separate thread
|
| 971 |
-
api_thread = threading.Thread(target=run_fastapi, daemon=True)
|
| 972 |
-
api_thread.start()
|
| 973 |
-
|
| 974 |
-
# Start Gradio in main thread
|
| 975 |
-
run_gradio()
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
@app.get("/")
|
| 6 |
+
def greet_json():
|
| 7 |
+
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|