Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,9 +12,13 @@ llm = Llama(
|
|
| 12 |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
| 13 |
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
| 14 |
# ),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model_path=hf_hub_download(
|
| 16 |
-
repo_id="
|
| 17 |
-
filename="
|
| 18 |
),
|
| 19 |
n_ctx=2048,
|
| 20 |
n_gpu_layers=50, # Adjust based on your VRAM
|
|
@@ -26,26 +30,26 @@ class VectorStore:
|
|
| 26 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
| 27 |
self.chroma_client = chromadb.Client()
|
| 28 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
| 29 |
-
|
| 30 |
# def populate_vectors(self, texts):
|
| 31 |
# embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
|
| 32 |
# for text, embedding in zip(texts, embeddings, ids):
|
| 33 |
# self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
|
| 34 |
|
| 35 |
-
|
| 36 |
def populate_vectors(self, dataset):
|
| 37 |
# Select the text columns to concatenate
|
| 38 |
-
|
| 39 |
-
recipe = dataset['train']['recipe_new'][:
|
| 40 |
-
allergy = dataset['train']['allergy_type'][:
|
| 41 |
-
ingredients = dataset['train']['ingredients_alternatives'][:
|
| 42 |
|
| 43 |
# Concatenate the text from both columns
|
| 44 |
-
texts = [f"{rep} {ingr} {alle}" for rep, ingr,alle in zip(recipe, ingredients,allergy)]
|
| 45 |
for i, item in enumerate(texts):
|
| 46 |
embeddings = self.embedding_model.encode(item).tolist()
|
| 47 |
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
|
| 48 |
-
|
| 49 |
def search_context(self, query, n_results=1):
|
| 50 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
| 51 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
|
@@ -55,101 +59,59 @@ class VectorStore:
|
|
| 55 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
|
| 56 |
vector_store = VectorStore("embedding_vector")
|
| 57 |
vector_store.populate_vectors(dataset)
|
| 58 |
-
def format_recipe(input_string):
|
| 59 |
-
# Clean up the input
|
| 60 |
-
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
| 61 |
-
|
| 62 |
-
# Split the text into lines
|
| 63 |
-
lines = cleaned_text.split('\n')
|
| 64 |
-
|
| 65 |
-
# Initialize sections
|
| 66 |
-
title = lines[0]
|
| 67 |
-
ingredients = []
|
| 68 |
-
instructions = []
|
| 69 |
-
substitutions = []
|
| 70 |
|
| 71 |
-
# Extract ingredients and instructions
|
| 72 |
-
in_instructions = False
|
| 73 |
-
for line in lines[1:]:
|
| 74 |
-
if line.startswith("Instructions:"):
|
| 75 |
-
in_instructions = True
|
| 76 |
-
continue
|
| 77 |
-
|
| 78 |
-
if in_instructions:
|
| 79 |
-
if line.strip(): # Check for non-empty lines
|
| 80 |
-
instructions.append(line.strip())
|
| 81 |
-
else:
|
| 82 |
-
if line.strip(): # Check for non-empty lines
|
| 83 |
-
ingredients.append(line.strip())
|
| 84 |
-
|
| 85 |
-
# Gather substitutions from the last few lines
|
| 86 |
-
for line in lines:
|
| 87 |
-
if ':' in line:
|
| 88 |
-
substitutions.append(line.strip())
|
| 89 |
|
| 90 |
-
|
| 91 |
-
formatted_recipe = f"## {title}\n\n### Ingredients:\n"
|
| 92 |
-
formatted_recipe += '\n'.join(f"- {item}" for item in ingredients) + "\n\n"
|
| 93 |
-
formatted_recipe += "### Instructions:\n" + '\n'.join(f"{i + 1}. {line}" for i, line in enumerate(instructions)) + "\n\n"
|
| 94 |
-
|
| 95 |
-
if substitutions:
|
| 96 |
-
formatted_recipe += "### Substitutions:\n" + '\n'.join(f"- **{line.split(':')[0].strip()}**: {line.split(':')[1].strip()}" for line in substitutions) + "\n"
|
| 97 |
-
return formatted_recipe
|
| 98 |
-
# print(formatted_recipe)
|
| 99 |
-
def generate_text(
|
| 100 |
-
message,
|
| 101 |
-
history: list[tuple[str, str]],
|
| 102 |
-
system_message,
|
| 103 |
-
max_tokens,
|
| 104 |
-
temperature,
|
| 105 |
-
top_p,
|
| 106 |
-
):
|
| 107 |
# Retrieve context from vector store
|
| 108 |
context_results = vector_store.search_context(message, n_results=1)
|
| 109 |
context = context_results[0] if context_results else ""
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
output = llm(
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# Define the Gradio interface
|
| 134 |
-
demo = gr.
|
| 135 |
-
generate_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
title="llama-cpp-python on GPU with ChromaDB",
|
| 137 |
description="Running LLM with context retrieval from ChromaDB",
|
| 138 |
examples=[
|
| 139 |
["I have leftover rice, what can I make out of it?"],
|
| 140 |
-
["
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
],
|
| 142 |
cache_examples=False,
|
| 143 |
-
retry_btn=None,
|
| 144 |
-
undo_btn="Delete Previous",
|
| 145 |
-
clear_btn="Clear",
|
| 146 |
-
additional_inputs=[
|
| 147 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 148 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 149 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 150 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 151 |
-
],
|
| 152 |
)
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
demo.launch()
|
|
|
|
|
|
| 12 |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
| 13 |
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
| 14 |
# ),
|
| 15 |
+
# model_path=hf_hub_download(
|
| 16 |
+
# repo_id="Ankitajadhav/Phi-3-mini-4k-instruct-q4.gguf",
|
| 17 |
+
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
| 18 |
+
# ),
|
| 19 |
model_path=hf_hub_download(
|
| 20 |
+
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
|
| 21 |
+
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
|
| 22 |
),
|
| 23 |
n_ctx=2048,
|
| 24 |
n_gpu_layers=50, # Adjust based on your VRAM
|
|
|
|
| 30 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
| 31 |
self.chroma_client = chromadb.Client()
|
| 32 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
| 33 |
+
## entire dataset
|
| 34 |
# def populate_vectors(self, texts):
|
| 35 |
# embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
|
| 36 |
# for text, embedding in zip(texts, embeddings, ids):
|
| 37 |
# self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
|
| 38 |
|
| 39 |
+
## subsetting
|
| 40 |
def populate_vectors(self, dataset):
|
| 41 |
# Select the text columns to concatenate
|
| 42 |
+
title = dataset['train']['title_cleaned'][:5000] # Limiting to 100 examples for the demo
|
| 43 |
+
recipe = dataset['train']['recipe_new'][:5000]
|
| 44 |
+
allergy = dataset['train']['allergy_type'][:5000]
|
| 45 |
+
ingredients = dataset['train']['ingredients_alternatives'][:5000]
|
| 46 |
|
| 47 |
# Concatenate the text from both columns
|
| 48 |
+
texts = [f"{tit} {rep} {ingr} {alle}" for tit, rep, ingr,alle in zip(title, recipe, ingredients,allergy)]
|
| 49 |
for i, item in enumerate(texts):
|
| 50 |
embeddings = self.embedding_model.encode(item).tolist()
|
| 51 |
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
|
| 52 |
+
## Method to populate the vector store with embeddings from a dataset
|
| 53 |
def search_context(self, query, n_results=1):
|
| 54 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
| 55 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
|
|
|
| 59 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
|
| 60 |
vector_store = VectorStore("embedding_vector")
|
| 61 |
vector_store.populate_vectors(dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def generate_text(message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
# Retrieve context from vector store
|
| 66 |
context_results = vector_store.search_context(message, n_results=1)
|
| 67 |
context = context_results[0] if context_results else ""
|
| 68 |
|
| 69 |
+
# Create the prompt template
|
| 70 |
+
prompt_template = (
|
| 71 |
+
f"SYSTEM: You are a recipe generating bot.\n"
|
| 72 |
+
f"SYSTEM: {context}\n"
|
| 73 |
+
f"USER: {message}\n"
|
| 74 |
+
f"ASSISTANT:\n"
|
| 75 |
+
)
|
| 76 |
|
| 77 |
+
# Generate text using the language model
|
| 78 |
output = llm(
|
| 79 |
+
prompt_template,
|
| 80 |
+
# max_new_tokens=256,
|
| 81 |
+
temperature=0.3,
|
| 82 |
+
top_p=0.95,
|
| 83 |
+
top_k=40,
|
| 84 |
+
repeat_penalty=1.1,
|
| 85 |
+
max_tokens=600,
|
| 86 |
+
# repetition_penalty=1.1
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Process the output
|
| 90 |
+
input_string = output['choices'][0]['text'].strip()
|
| 91 |
+
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
| 92 |
+
continuous_text = '\n'.join(cleaned_text.split('\n'))
|
| 93 |
+
return continuous_text
|
| 94 |
|
| 95 |
# Define the Gradio interface
|
| 96 |
+
demo = gr.Interface(
|
| 97 |
+
fn=generate_text,
|
| 98 |
+
inputs=[
|
| 99 |
+
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
| 100 |
+
],
|
| 101 |
+
outputs=gr.Textbox(label="Generated Text"),
|
| 102 |
title="llama-cpp-python on GPU with ChromaDB",
|
| 103 |
description="Running LLM with context retrieval from ChromaDB",
|
| 104 |
examples=[
|
| 105 |
["I have leftover rice, what can I make out of it?"],
|
| 106 |
+
["I just have some milk and chocolate, what dessert can I make?"],
|
| 107 |
+
["I am allergic to coconut milk, what can I use instead in a Thai curry?"],
|
| 108 |
+
["Can you suggest a vegan breakfast recipe?"],
|
| 109 |
+
["How do I make a perfect scrambled egg?"],
|
| 110 |
+
["Can you guide me through making a soufflé?"],
|
| 111 |
],
|
| 112 |
cache_examples=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
demo.launch()
|
| 117 |
+
|