Update app.py
Browse files
app.py
CHANGED
|
@@ -77,12 +77,6 @@ class OCRProcessor:
|
|
| 77 |
def process_file(self, file_path: str) -> Dict:
|
| 78 |
"""
|
| 79 |
Process a file using OCR.space API
|
| 80 |
-
|
| 81 |
-
Args:
|
| 82 |
-
file_path: Path to the file to be processed
|
| 83 |
-
|
| 84 |
-
Returns:
|
| 85 |
-
Dictionary containing the OCR results and status
|
| 86 |
"""
|
| 87 |
start_time = time.time()
|
| 88 |
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
|
@@ -101,11 +95,6 @@ class OCRProcessor:
|
|
| 101 |
file_type = self._get_file_type(file_path)
|
| 102 |
ocr_logger.info(f"Detected file type: {file_type}")
|
| 103 |
|
| 104 |
-
# Special handling for Word documents - convert to PDF if needed
|
| 105 |
-
if file_type.startswith('application/vnd.openxmlformats-officedocument') or file_type == 'application/msword':
|
| 106 |
-
ocr_logger.info("Word document detected, processing directly")
|
| 107 |
-
# Note: OCR.space may handle Word directly, but if not, conversion would be needed here
|
| 108 |
-
|
| 109 |
# Prepare the API request
|
| 110 |
with open(file_path, 'rb') as f:
|
| 111 |
file_data = f.read()
|
|
@@ -176,12 +165,6 @@ class OCRProcessor:
|
|
| 176 |
def _extract_text_from_result(self, result: Dict) -> str:
|
| 177 |
"""
|
| 178 |
Extract all text from the OCR API result
|
| 179 |
-
|
| 180 |
-
Args:
|
| 181 |
-
result: The OCR API response JSON
|
| 182 |
-
|
| 183 |
-
Returns:
|
| 184 |
-
Extracted text as a single string
|
| 185 |
"""
|
| 186 |
extracted_text = ""
|
| 187 |
|
|
@@ -195,12 +178,6 @@ class OCRProcessor:
|
|
| 195 |
def _get_file_type(self, file_path: str) -> str:
|
| 196 |
"""
|
| 197 |
Determine MIME type of a file
|
| 198 |
-
|
| 199 |
-
Args:
|
| 200 |
-
file_path: Path to the file
|
| 201 |
-
|
| 202 |
-
Returns:
|
| 203 |
-
MIME type as string
|
| 204 |
"""
|
| 205 |
mime_type, _ = mimetypes.guess_type(file_path)
|
| 206 |
if mime_type is None:
|
|
@@ -208,11 +185,9 @@ class OCRProcessor:
|
|
| 208 |
return 'application/octet-stream'
|
| 209 |
return mime_type
|
| 210 |
|
| 211 |
-
|
| 212 |
def is_admin_password(input_text: str) -> bool:
|
| 213 |
"""
|
| 214 |
Check if the input text matches the admin password using secure hash comparison.
|
| 215 |
-
This prevents the password from being visible in the source code.
|
| 216 |
"""
|
| 217 |
# Hash the input text
|
| 218 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
@@ -220,7 +195,6 @@ def is_admin_password(input_text: str) -> bool:
|
|
| 220 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
| 221 |
return input_hash == ADMIN_PASSWORD_HASH
|
| 222 |
|
| 223 |
-
|
| 224 |
class TextWindowProcessor:
|
| 225 |
def __init__(self):
|
| 226 |
try:
|
|
@@ -272,10 +246,8 @@ class TextWindowProcessor:
|
|
| 272 |
|
| 273 |
return windows, window_sentence_indices
|
| 274 |
|
| 275 |
-
|
| 276 |
class TextClassifier:
|
| 277 |
def __init__(self):
|
| 278 |
-
# FIXED: Removed the thread configuration here, as it's now at the module level
|
| 279 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 280 |
self.model_name = MODEL_NAME
|
| 281 |
self.tokenizer = None
|
|
@@ -310,6 +282,7 @@ class TextClassifier:
|
|
| 310 |
|
| 311 |
self.model.eval()
|
| 312 |
|
|
|
|
| 313 |
def quick_scan(self, text: str) -> Dict:
|
| 314 |
"""Perform a quick scan using simple window analysis."""
|
| 315 |
if not text.strip():
|
|
@@ -520,19 +493,10 @@ class TextClassifier:
|
|
| 520 |
'num_sentences': num_sentences
|
| 521 |
}
|
| 522 |
|
| 523 |
-
|
| 524 |
# Function to handle file upload, OCR processing, and text analysis
|
| 525 |
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
| 526 |
"""
|
| 527 |
Handle file upload, OCR processing, and text analysis
|
| 528 |
-
|
| 529 |
-
Args:
|
| 530 |
-
file_obj: Uploaded file object from Gradio (bytes when using type="binary")
|
| 531 |
-
mode: Analysis mode (quick or detailed)
|
| 532 |
-
classifier: The TextClassifier instance
|
| 533 |
-
|
| 534 |
-
Returns:
|
| 535 |
-
Analysis results as a tuple (same format as original analyze_text function)
|
| 536 |
"""
|
| 537 |
if file_obj is None:
|
| 538 |
return (
|
|
@@ -542,10 +506,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
| 542 |
)
|
| 543 |
|
| 544 |
# Create a temporary file with an appropriate extension based on content
|
| 545 |
-
# Since we don't have the original filename when using binary mode,
|
| 546 |
-
# we'll use a generic extension based on simple content detection
|
| 547 |
-
|
| 548 |
-
# Simple content type detection
|
| 549 |
content_start = file_obj[:20] # Look at the first few bytes
|
| 550 |
|
| 551 |
# Default to .bin extension
|
|
@@ -561,7 +521,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
| 561 |
file_ext = ".png"
|
| 562 |
elif content_start.startswith(b'GIF'): # GIF
|
| 563 |
file_ext = ".gif"
|
| 564 |
-
# Add more content type detection as needed
|
| 565 |
|
| 566 |
# Create a temporary file with the detected extension
|
| 567 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
|
@@ -600,7 +559,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
| 600 |
if os.path.exists(temp_file_path):
|
| 601 |
os.remove(temp_file_path)
|
| 602 |
|
| 603 |
-
|
| 604 |
def initialize_excel_log():
|
| 605 |
"""Initialize the Excel log file if it doesn't exist."""
|
| 606 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
@@ -810,20 +768,11 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 810 |
overall_result
|
| 811 |
)
|
| 812 |
|
|
|
|
|
|
|
| 813 |
|
| 814 |
-
#
|
| 815 |
-
def
|
| 816 |
-
"""
|
| 817 |
-
Set up Gradio interface with a more aligned and compact file upload
|
| 818 |
-
|
| 819 |
-
Args:
|
| 820 |
-
classifier: The TextClassifier instance
|
| 821 |
-
|
| 822 |
-
Returns:
|
| 823 |
-
Gradio Interface object
|
| 824 |
-
"""
|
| 825 |
-
import gradio as gr
|
| 826 |
-
|
| 827 |
# Create analyzer functions that capture the classifier
|
| 828 |
def analyze_text_wrapper(text, mode):
|
| 829 |
return analyze_text(text, mode, classifier)
|
|
@@ -833,115 +782,109 @@ def setup_gradio_interface(classifier):
|
|
| 833 |
return analyze_text_wrapper("", mode) # Return empty analysis
|
| 834 |
return handle_file_upload_and_analyze(file_obj, mode, classifier)
|
| 835 |
|
|
|
|
| 836 |
with gr.Blocks(title="AI Text Detector") as demo:
|
| 837 |
gr.Markdown("# AI Text Detector")
|
| 838 |
|
| 839 |
with gr.Row():
|
| 840 |
-
# Left column
|
| 841 |
with gr.Column():
|
| 842 |
text_input = gr.Textbox(
|
| 843 |
-
lines=8,
|
| 844 |
placeholder="Enter text to analyze...",
|
| 845 |
label="Input Text"
|
| 846 |
)
|
| 847 |
|
| 848 |
with gr.Row():
|
| 849 |
-
#
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
label=""
|
| 857 |
-
)
|
| 858 |
|
| 859 |
-
#
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
)
|
| 867 |
|
| 868 |
-
# Analyze button
|
| 869 |
analyze_button = gr.Button("Analyze Text")
|
| 870 |
|
| 871 |
-
# Right column
|
| 872 |
with gr.Column():
|
| 873 |
output_html = gr.HTML(label="Highlighted Analysis")
|
| 874 |
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
| 875 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
| 876 |
|
| 877 |
-
# Connect
|
| 878 |
analyze_button.click(
|
| 879 |
analyze_text_wrapper,
|
| 880 |
inputs=[text_input, mode_selection],
|
| 881 |
outputs=[output_html, output_sentences, output_result]
|
| 882 |
)
|
| 883 |
|
| 884 |
-
# Connect file upload to automatically process when changed
|
| 885 |
file_upload.change(
|
| 886 |
handle_file_upload_wrapper,
|
| 887 |
inputs=[file_upload, mode_selection],
|
| 888 |
outputs=[output_html, output_sentences, output_result]
|
| 889 |
)
|
| 890 |
|
| 891 |
-
#
|
| 892 |
gr.HTML("""
|
| 893 |
<style>
|
| 894 |
-
/* Make file upload
|
| 895 |
-
.
|
| 896 |
-
|
|
|
|
|
|
|
| 897 |
}
|
| 898 |
|
| 899 |
-
.
|
| 900 |
-
|
| 901 |
-
|
| 902 |
}
|
| 903 |
|
| 904 |
-
.
|
| 905 |
-
min-height: 0;
|
|
|
|
| 906 |
}
|
| 907 |
|
| 908 |
-
/*
|
| 909 |
-
.file-upload
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
justify-content: center;
|
| 913 |
-
padding-bottom: 10px;
|
| 914 |
}
|
| 915 |
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 922 |
}
|
| 923 |
</style>
|
| 924 |
""")
|
| 925 |
|
| 926 |
return demo
|
| 927 |
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
"""
|
| 932 |
-
Setup the application with OCR capabilities
|
| 933 |
-
"""
|
| 934 |
-
# Initialize the classifier (uses the fixed class)
|
| 935 |
-
classifier = TextClassifier()
|
| 936 |
-
|
| 937 |
-
# Create the Gradio interface with file upload functionality
|
| 938 |
-
demo = setup_gradio_interface(classifier)
|
| 939 |
|
| 940 |
# Get the FastAPI app from Gradio
|
| 941 |
app = demo.app
|
| 942 |
|
| 943 |
-
# Add CORS middleware
|
| 944 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 945 |
app.add_middleware(
|
| 946 |
CORSMiddleware,
|
| 947 |
allow_origins=["*"], # For development
|
|
@@ -950,14 +893,11 @@ def setup_app_with_ocr():
|
|
| 950 |
allow_headers=["*"],
|
| 951 |
)
|
| 952 |
|
| 953 |
-
# Return the demo for launching
|
| 954 |
return demo
|
| 955 |
|
| 956 |
-
|
| 957 |
# Initialize the application
|
| 958 |
if __name__ == "__main__":
|
| 959 |
-
|
| 960 |
-
demo = setup_app_with_ocr()
|
| 961 |
|
| 962 |
# Start the server
|
| 963 |
demo.queue()
|
|
|
|
| 77 |
def process_file(self, file_path: str) -> Dict:
|
| 78 |
"""
|
| 79 |
Process a file using OCR.space API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
"""
|
| 81 |
start_time = time.time()
|
| 82 |
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
|
|
|
| 95 |
file_type = self._get_file_type(file_path)
|
| 96 |
ocr_logger.info(f"Detected file type: {file_type}")
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Prepare the API request
|
| 99 |
with open(file_path, 'rb') as f:
|
| 100 |
file_data = f.read()
|
|
|
|
| 165 |
def _extract_text_from_result(self, result: Dict) -> str:
|
| 166 |
"""
|
| 167 |
Extract all text from the OCR API result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
"""
|
| 169 |
extracted_text = ""
|
| 170 |
|
|
|
|
| 178 |
def _get_file_type(self, file_path: str) -> str:
|
| 179 |
"""
|
| 180 |
Determine MIME type of a file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
"""
|
| 182 |
mime_type, _ = mimetypes.guess_type(file_path)
|
| 183 |
if mime_type is None:
|
|
|
|
| 185 |
return 'application/octet-stream'
|
| 186 |
return mime_type
|
| 187 |
|
|
|
|
| 188 |
def is_admin_password(input_text: str) -> bool:
|
| 189 |
"""
|
| 190 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
|
| 191 |
"""
|
| 192 |
# Hash the input text
|
| 193 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
|
|
| 195 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
| 196 |
return input_hash == ADMIN_PASSWORD_HASH
|
| 197 |
|
|
|
|
| 198 |
class TextWindowProcessor:
|
| 199 |
def __init__(self):
|
| 200 |
try:
|
|
|
|
| 246 |
|
| 247 |
return windows, window_sentence_indices
|
| 248 |
|
|
|
|
| 249 |
class TextClassifier:
|
| 250 |
def __init__(self):
|
|
|
|
| 251 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 252 |
self.model_name = MODEL_NAME
|
| 253 |
self.tokenizer = None
|
|
|
|
| 282 |
|
| 283 |
self.model.eval()
|
| 284 |
|
| 285 |
+
# [Other TextClassifier methods remain the same as in paste.txt]
|
| 286 |
def quick_scan(self, text: str) -> Dict:
|
| 287 |
"""Perform a quick scan using simple window analysis."""
|
| 288 |
if not text.strip():
|
|
|
|
| 493 |
'num_sentences': num_sentences
|
| 494 |
}
|
| 495 |
|
|
|
|
| 496 |
# Function to handle file upload, OCR processing, and text analysis
|
| 497 |
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
| 498 |
"""
|
| 499 |
Handle file upload, OCR processing, and text analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
"""
|
| 501 |
if file_obj is None:
|
| 502 |
return (
|
|
|
|
| 506 |
)
|
| 507 |
|
| 508 |
# Create a temporary file with an appropriate extension based on content
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
content_start = file_obj[:20] # Look at the first few bytes
|
| 510 |
|
| 511 |
# Default to .bin extension
|
|
|
|
| 521 |
file_ext = ".png"
|
| 522 |
elif content_start.startswith(b'GIF'): # GIF
|
| 523 |
file_ext = ".gif"
|
|
|
|
| 524 |
|
| 525 |
# Create a temporary file with the detected extension
|
| 526 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
|
|
|
| 559 |
if os.path.exists(temp_file_path):
|
| 560 |
os.remove(temp_file_path)
|
| 561 |
|
|
|
|
| 562 |
def initialize_excel_log():
|
| 563 |
"""Initialize the Excel log file if it doesn't exist."""
|
| 564 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
|
| 768 |
overall_result
|
| 769 |
)
|
| 770 |
|
| 771 |
+
# Initialize the classifier globally
|
| 772 |
+
classifier = TextClassifier()
|
| 773 |
|
| 774 |
+
# Create Gradio interface with a small file upload button next to the radio buttons
|
| 775 |
+
def setup_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
# Create analyzer functions that capture the classifier
|
| 777 |
def analyze_text_wrapper(text, mode):
|
| 778 |
return analyze_text(text, mode, classifier)
|
|
|
|
| 782 |
return analyze_text_wrapper("", mode) # Return empty analysis
|
| 783 |
return handle_file_upload_and_analyze(file_obj, mode, classifier)
|
| 784 |
|
| 785 |
+
# Create the interface similar to the original but with a small file upload button
|
| 786 |
with gr.Blocks(title="AI Text Detector") as demo:
|
| 787 |
gr.Markdown("# AI Text Detector")
|
| 788 |
|
| 789 |
with gr.Row():
|
| 790 |
+
# Left column for input
|
| 791 |
with gr.Column():
|
| 792 |
text_input = gr.Textbox(
|
| 793 |
+
lines=8,
|
| 794 |
placeholder="Enter text to analyze...",
|
| 795 |
label="Input Text"
|
| 796 |
)
|
| 797 |
|
| 798 |
with gr.Row():
|
| 799 |
+
# Mode selection (same as original)
|
| 800 |
+
mode_selection = gr.Radio(
|
| 801 |
+
choices=["quick", "detailed"],
|
| 802 |
+
value="quick",
|
| 803 |
+
label="Analysis Mode",
|
| 804 |
+
info="Quick mode for faster analysis. Detailed mode for sentence-level analysis."
|
| 805 |
+
)
|
|
|
|
|
|
|
| 806 |
|
| 807 |
+
# Small file upload button (like the Claude paperclip)
|
| 808 |
+
file_upload = gr.File(
|
| 809 |
+
label="",
|
| 810 |
+
file_types=["image", "pdf", "doc", "docx"],
|
| 811 |
+
type="binary",
|
| 812 |
+
elem_classes=["small-file-upload"]
|
| 813 |
+
)
|
|
|
|
| 814 |
|
|
|
|
| 815 |
analyze_button = gr.Button("Analyze Text")
|
| 816 |
|
| 817 |
+
# Right column for output
|
| 818 |
with gr.Column():
|
| 819 |
output_html = gr.HTML(label="Highlighted Analysis")
|
| 820 |
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
| 821 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
| 822 |
|
| 823 |
+
# Connect the components
|
| 824 |
analyze_button.click(
|
| 825 |
analyze_text_wrapper,
|
| 826 |
inputs=[text_input, mode_selection],
|
| 827 |
outputs=[output_html, output_sentences, output_result]
|
| 828 |
)
|
| 829 |
|
|
|
|
| 830 |
file_upload.change(
|
| 831 |
handle_file_upload_wrapper,
|
| 832 |
inputs=[file_upload, mode_selection],
|
| 833 |
outputs=[output_html, output_sentences, output_result]
|
| 834 |
)
|
| 835 |
|
| 836 |
+
# Custom CSS to style the file upload button like a small paperclip
|
| 837 |
gr.HTML("""
|
| 838 |
<style>
|
| 839 |
+
/* Make the file upload small and positioned correctly */
|
| 840 |
+
.small-file-upload {
|
| 841 |
+
width: 40px !important;
|
| 842 |
+
margin-left: 10px !important;
|
| 843 |
+
margin-top: 15px !important;
|
| 844 |
}
|
| 845 |
|
| 846 |
+
.small-file-upload > .wrap {
|
| 847 |
+
padding: 0 !important;
|
| 848 |
+
margin: 0 !important;
|
| 849 |
}
|
| 850 |
|
| 851 |
+
.small-file-upload .file-preview {
|
| 852 |
+
min-height: 0 !important;
|
| 853 |
+
padding: 0 !important;
|
| 854 |
}
|
| 855 |
|
| 856 |
+
/* Make file upload look like a paperclip icon */
|
| 857 |
+
.small-file-upload .icon {
|
| 858 |
+
font-size: 1.2em !important;
|
| 859 |
+
opacity: 0.7 !important;
|
|
|
|
|
|
|
| 860 |
}
|
| 861 |
|
| 862 |
+
.small-file-upload .upload-button {
|
| 863 |
+
border-radius: 50% !important;
|
| 864 |
+
padding: 5px !important;
|
| 865 |
+
width: 30px !important;
|
| 866 |
+
height: 30px !important;
|
| 867 |
+
display: flex !important;
|
| 868 |
+
align-items: center !important;
|
| 869 |
+
justify-content: center !important;
|
| 870 |
+
}
|
| 871 |
+
|
| 872 |
+
.small-file-upload .upload-button:hover {
|
| 873 |
+
background-color: #f0f0f0 !important;
|
| 874 |
}
|
| 875 |
</style>
|
| 876 |
""")
|
| 877 |
|
| 878 |
return demo
|
| 879 |
|
| 880 |
+
# Setup the app with CORS middleware
|
| 881 |
+
def setup_app():
|
| 882 |
+
demo = setup_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 883 |
|
| 884 |
# Get the FastAPI app from Gradio
|
| 885 |
app = demo.app
|
| 886 |
|
| 887 |
+
# Add CORS middleware
|
|
|
|
| 888 |
app.add_middleware(
|
| 889 |
CORSMiddleware,
|
| 890 |
allow_origins=["*"], # For development
|
|
|
|
| 893 |
allow_headers=["*"],
|
| 894 |
)
|
| 895 |
|
|
|
|
| 896 |
return demo
|
| 897 |
|
|
|
|
| 898 |
# Initialize the application
|
| 899 |
if __name__ == "__main__":
|
| 900 |
+
demo = setup_app()
|
|
|
|
| 901 |
|
| 902 |
# Start the server
|
| 903 |
demo.queue()
|