Update app.py
Browse files
app.py
CHANGED
|
@@ -69,33 +69,35 @@ class TextClassifier:
|
|
| 69 |
self.initialize_model()
|
| 70 |
|
| 71 |
def initialize_model(self):
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
model_path = "model.pt" # Your model file should be uploaded as model.pt
|
| 91 |
-
if os.path.exists(model_path):
|
| 92 |
-
logger.info(f"Loading custom model from {model_path}")
|
| 93 |
-
checkpoint = torch.load(model_path, map_location=self.device)
|
| 94 |
-
self.model.load_state_dict(checkpoint['model_state_dict'])
|
| 95 |
-
else:
|
| 96 |
-
logger.warning("Custom model file not found. Using base model.")
|
| 97 |
-
|
| 98 |
-
self.model.eval()
|
| 99 |
|
| 100 |
def predict_with_sentence_scores(self, text: str) -> Dict:
|
| 101 |
"""Predict with sentence-level granularity using overlapping windows."""
|
|
|
|
| 69 |
self.initialize_model()
|
| 70 |
|
| 71 |
def initialize_model(self):
|
| 72 |
+
"""Initialize the model and tokenizer."""
|
| 73 |
+
logger.info("Initializing model and tokenizer...")
|
| 74 |
+
|
| 75 |
+
from transformers import DebertaV2TokenizerFast
|
| 76 |
+
|
| 77 |
+
# Try to load tokenizer directly from the Hub
|
| 78 |
+
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
| 79 |
+
self.model_name,
|
| 80 |
+
model_max_length=MAX_LENGTH,
|
| 81 |
+
use_fast=False,
|
| 82 |
+
from_slow=True
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Initialize the model as before
|
| 86 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 87 |
+
self.model_name,
|
| 88 |
+
num_labels=2
|
| 89 |
+
).to(self.device)
|
| 90 |
+
|
| 91 |
+
# Your existing model loading code
|
| 92 |
+
model_path = "model.pt"
|
| 93 |
+
if os.path.exists(model_path):
|
| 94 |
+
logger.info(f"Loading custom model from {model_path}")
|
| 95 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
| 96 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
| 97 |
+
else:
|
| 98 |
+
logger.warning("Custom model file not found. Using base model.")
|
| 99 |
|
| 100 |
+
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def predict_with_sentence_scores(self, text: str) -> Dict:
|
| 103 |
"""Predict with sentence-level granularity using overlapping windows."""
|