Update app.py
Browse files
app.py
CHANGED
|
@@ -178,9 +178,100 @@ class TextClassifier:
|
|
| 178 |
|
| 179 |
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
"""Original prediction method with modified window handling"""
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
if not text.strip():
|
| 185 |
return {
|
| 186 |
'sentence_predictions': [],
|
|
@@ -192,25 +283,23 @@ class TextClassifier:
|
|
| 192 |
'num_sentences': 0
|
| 193 |
}
|
| 194 |
}
|
| 195 |
-
|
| 196 |
-
self.model.eval()
|
| 197 |
sentences = self.processor.split_into_sentences(text)
|
| 198 |
if not sentences:
|
| 199 |
return {}
|
| 200 |
-
|
| 201 |
# Create centered windows for each sentence
|
| 202 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 203 |
-
|
| 204 |
# Track scores for each sentence
|
| 205 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 206 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 207 |
-
|
| 208 |
# Process windows in batches
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
inputs = self.tokenizer(
|
| 215 |
batch_windows,
|
| 216 |
truncation=True,
|
|
@@ -218,48 +307,48 @@ class TextClassifier:
|
|
| 218 |
max_length=MAX_LENGTH,
|
| 219 |
return_tensors="pt"
|
| 220 |
).to(self.device)
|
| 221 |
-
|
| 222 |
with torch.no_grad():
|
| 223 |
outputs = self.model(**inputs)
|
| 224 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 225 |
-
|
| 226 |
# Attribute predictions with weighted scoring
|
| 227 |
for window_idx, indices in enumerate(batch_indices):
|
| 228 |
center_idx = len(indices) // 2
|
| 229 |
center_weight = 0.7 # Higher weight for center sentence
|
| 230 |
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 231 |
-
|
| 232 |
for pos, sent_idx in enumerate(indices):
|
| 233 |
# Apply higher weight to center sentence
|
| 234 |
weight = center_weight if pos == center_idx else edge_weight
|
| 235 |
sentence_appearances[sent_idx] += weight
|
| 236 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 237 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 238 |
-
|
| 239 |
# Clean up memory
|
| 240 |
del inputs, outputs, probs
|
| 241 |
if torch.cuda.is_available():
|
| 242 |
torch.cuda.empty_cache()
|
| 243 |
-
|
| 244 |
# Calculate final predictions with boundary smoothing
|
| 245 |
sentence_predictions = []
|
| 246 |
for i in range(len(sentences)):
|
| 247 |
if sentence_appearances[i] > 0:
|
| 248 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 249 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 250 |
-
|
| 251 |
-
#
|
| 252 |
if i > 0 and i < len(sentences) - 1:
|
| 253 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 254 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 255 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 256 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 257 |
-
|
| 258 |
# Check if we're at a prediction boundary
|
| 259 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 260 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 261 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 262 |
-
|
| 263 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 264 |
# Small adjustment at boundaries
|
| 265 |
smooth_factor = 0.1
|
|
@@ -267,7 +356,7 @@ class TextClassifier:
|
|
| 267 |
(prev_human + next_human) * smooth_factor / 2)
|
| 268 |
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 269 |
(prev_ai + next_ai) * smooth_factor / 2)
|
| 270 |
-
|
| 271 |
sentence_predictions.append({
|
| 272 |
'sentence': sentences[i],
|
| 273 |
'human_prob': human_prob,
|
|
@@ -275,7 +364,7 @@ class TextClassifier:
|
|
| 275 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 276 |
'confidence': max(human_prob, ai_prob)
|
| 277 |
})
|
| 278 |
-
|
| 279 |
return {
|
| 280 |
'sentence_predictions': sentence_predictions,
|
| 281 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
|
@@ -283,7 +372,6 @@ class TextClassifier:
|
|
| 283 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 284 |
}
|
| 285 |
|
| 286 |
-
|
| 287 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 288 |
"""Format predictions as HTML with color-coding."""
|
| 289 |
html_parts = []
|
|
|
|
| 178 |
|
| 179 |
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
"""Original prediction method with modified window handling"""
|
| 181 |
+
if self.model is None or self.tokenizer is None:
|
| 182 |
+
self.load_model()
|
| 183 |
+
|
| 184 |
+
self.model.eval()
|
| 185 |
+
sentences = self.processor.split_into_sentences(text)
|
| 186 |
+
if not sentences:
|
| 187 |
+
return {}
|
| 188 |
+
|
| 189 |
+
# Create centered windows for each sentence
|
| 190 |
+
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 191 |
+
|
| 192 |
+
# Track scores for each sentence
|
| 193 |
+
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 194 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 195 |
+
|
| 196 |
+
# Process windows in batches
|
| 197 |
+
batch_size = 16
|
| 198 |
+
for i in range(0, len(windows), batch_size):
|
| 199 |
+
batch_windows = windows[i:i + batch_size]
|
| 200 |
+
batch_indices = window_sentence_indices[i:i + batch_size]
|
| 201 |
+
|
| 202 |
+
inputs = self.tokenizer(
|
| 203 |
+
batch_windows,
|
| 204 |
+
truncation=True,
|
| 205 |
+
padding=True,
|
| 206 |
+
max_length=MAX_LENGTH,
|
| 207 |
+
return_tensors="pt"
|
| 208 |
+
).to(self.device)
|
| 209 |
+
|
| 210 |
+
with torch.no_grad():
|
| 211 |
+
outputs = self.model(**inputs)
|
| 212 |
+
probs = F.softmax(outputs.logits, dim=-1)
|
| 213 |
+
|
| 214 |
+
# Attribute predictions more carefully
|
| 215 |
+
for window_idx, indices in enumerate(batch_indices):
|
| 216 |
+
center_idx = len(indices) // 2
|
| 217 |
+
center_weight = 0.7 # Higher weight for center sentence
|
| 218 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 219 |
+
|
| 220 |
+
for pos, sent_idx in enumerate(indices):
|
| 221 |
+
# Apply higher weight to center sentence
|
| 222 |
+
weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
+
sentence_appearances[sent_idx] += weight
|
| 224 |
+
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 225 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 226 |
+
|
| 227 |
+
del inputs, outputs, probs
|
| 228 |
+
if torch.cuda.is_available():
|
| 229 |
+
torch.cuda.empty_cache()
|
| 230 |
+
|
| 231 |
+
# Calculate final predictions
|
| 232 |
+
sentence_predictions = []
|
| 233 |
+
for i in range(len(sentences)):
|
| 234 |
+
if sentence_appearances[i] > 0:
|
| 235 |
+
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 236 |
+
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 237 |
+
|
| 238 |
+
# Only apply minimal smoothing at prediction boundaries
|
| 239 |
+
if i > 0 and i < len(sentences) - 1:
|
| 240 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 241 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 242 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 243 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 244 |
+
|
| 245 |
+
# Check if we're at a prediction boundary
|
| 246 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 247 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 248 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 249 |
+
|
| 250 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
| 251 |
+
# Small adjustment at boundaries
|
| 252 |
+
smooth_factor = 0.1
|
| 253 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
| 254 |
+
(prev_human + next_human) * smooth_factor / 2)
|
| 255 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 256 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
| 257 |
+
|
| 258 |
+
sentence_predictions.append({
|
| 259 |
+
'sentence': sentences[i],
|
| 260 |
+
'human_prob': human_prob,
|
| 261 |
+
'ai_prob': ai_prob,
|
| 262 |
+
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 263 |
+
'confidence': max(human_prob, ai_prob)
|
| 264 |
+
})
|
| 265 |
+
|
| 266 |
+
return {
|
| 267 |
+
'sentence_predictions': sentence_predictions,
|
| 268 |
+
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 269 |
+
'full_text': text,
|
| 270 |
+
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
def detailed_scan(self, text: str) -> Dict:
|
| 274 |
+
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 275 |
if not text.strip():
|
| 276 |
return {
|
| 277 |
'sentence_predictions': [],
|
|
|
|
| 283 |
'num_sentences': 0
|
| 284 |
}
|
| 285 |
}
|
| 286 |
+
|
|
|
|
| 287 |
sentences = self.processor.split_into_sentences(text)
|
| 288 |
if not sentences:
|
| 289 |
return {}
|
| 290 |
+
|
| 291 |
# Create centered windows for each sentence
|
| 292 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 293 |
+
|
| 294 |
# Track scores for each sentence
|
| 295 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 296 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 297 |
+
|
| 298 |
# Process windows in batches
|
| 299 |
+
for i in range(0, len(windows), BATCH_SIZE):
|
| 300 |
+
batch_windows = windows[i:i + BATCH_SIZE]
|
| 301 |
+
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
| 302 |
+
|
|
|
|
| 303 |
inputs = self.tokenizer(
|
| 304 |
batch_windows,
|
| 305 |
truncation=True,
|
|
|
|
| 307 |
max_length=MAX_LENGTH,
|
| 308 |
return_tensors="pt"
|
| 309 |
).to(self.device)
|
| 310 |
+
|
| 311 |
with torch.no_grad():
|
| 312 |
outputs = self.model(**inputs)
|
| 313 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 314 |
+
|
| 315 |
# Attribute predictions with weighted scoring
|
| 316 |
for window_idx, indices in enumerate(batch_indices):
|
| 317 |
center_idx = len(indices) // 2
|
| 318 |
center_weight = 0.7 # Higher weight for center sentence
|
| 319 |
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 320 |
+
|
| 321 |
for pos, sent_idx in enumerate(indices):
|
| 322 |
# Apply higher weight to center sentence
|
| 323 |
weight = center_weight if pos == center_idx else edge_weight
|
| 324 |
sentence_appearances[sent_idx] += weight
|
| 325 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 326 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 327 |
+
|
| 328 |
# Clean up memory
|
| 329 |
del inputs, outputs, probs
|
| 330 |
if torch.cuda.is_available():
|
| 331 |
torch.cuda.empty_cache()
|
| 332 |
+
|
| 333 |
# Calculate final predictions with boundary smoothing
|
| 334 |
sentence_predictions = []
|
| 335 |
for i in range(len(sentences)):
|
| 336 |
if sentence_appearances[i] > 0:
|
| 337 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 338 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 339 |
+
|
| 340 |
+
# Apply minimal smoothing at prediction boundaries
|
| 341 |
if i > 0 and i < len(sentences) - 1:
|
| 342 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 343 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 344 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 345 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 346 |
+
|
| 347 |
# Check if we're at a prediction boundary
|
| 348 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 349 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 350 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 351 |
+
|
| 352 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 353 |
# Small adjustment at boundaries
|
| 354 |
smooth_factor = 0.1
|
|
|
|
| 356 |
(prev_human + next_human) * smooth_factor / 2)
|
| 357 |
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 358 |
(prev_ai + next_ai) * smooth_factor / 2)
|
| 359 |
+
|
| 360 |
sentence_predictions.append({
|
| 361 |
'sentence': sentences[i],
|
| 362 |
'human_prob': human_prob,
|
|
|
|
| 364 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 365 |
'confidence': max(human_prob, ai_prob)
|
| 366 |
})
|
| 367 |
+
|
| 368 |
return {
|
| 369 |
'sentence_predictions': sentence_predictions,
|
| 370 |
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
|
|
|
| 372 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 373 |
}
|
| 374 |
|
|
|
|
| 375 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 376 |
"""Format predictions as HTML with color-coding."""
|
| 377 |
html_parts = []
|