Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,28 +33,36 @@ MODEL_NAME = "microsoft/deberta-v3-small"
|
|
| 33 |
WINDOW_SIZE = 6
|
| 34 |
WINDOW_OVERLAP = 2
|
| 35 |
CONFIDENCE_THRESHOLD = 0.65
|
| 36 |
-
BATCH_SIZE = 8
|
| 37 |
-
MAX_WORKERS = 4
|
| 38 |
-
|
| 39 |
|
|
|
|
|
|
|
| 40 |
if not torch.cuda.is_available():
|
|
|
|
| 41 |
torch.set_num_threads(MAX_WORKERS)
|
| 42 |
try:
|
|
|
|
| 43 |
torch.set_num_interop_threads(MAX_WORKERS)
|
| 44 |
except RuntimeError as e:
|
| 45 |
logger.warning(f"Could not set interop threads: {str(e)}")
|
| 46 |
|
|
|
|
| 47 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
| 48 |
|
| 49 |
if not ADMIN_PASSWORD_HASH:
|
| 50 |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
|
| 51 |
|
|
|
|
| 52 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
| 55 |
OCR_MAX_PDF_PAGES = 3
|
| 56 |
OCR_MAX_FILE_SIZE_MB = 1
|
| 57 |
|
|
|
|
| 58 |
ocr_logger = logging.getLogger("ocr_module")
|
| 59 |
ocr_logger.setLevel(logging.INFO)
|
| 60 |
|
|
@@ -87,6 +95,10 @@ class OCRProcessor:
|
|
| 87 |
file_type = self._get_file_type(file_path)
|
| 88 |
ocr_logger.info(f"Detected file type: {file_type}")
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
# Set up API parameters
|
| 91 |
payload = {
|
| 92 |
'isOverlayRequired': 'false',
|
|
@@ -101,10 +113,7 @@ class OCRProcessor:
|
|
| 101 |
ocr_logger.info("PDF document detected, enforcing page limit")
|
| 102 |
payload['filetype'] = 'PDF'
|
| 103 |
|
| 104 |
-
# Prepare file for OCR API
|
| 105 |
-
with open(file_path, 'rb') as f:
|
| 106 |
-
file_data = f.read()
|
| 107 |
-
|
| 108 |
files = {
|
| 109 |
'file': (os.path.basename(file_path), file_data, file_type)
|
| 110 |
}
|
|
@@ -115,61 +124,33 @@ class OCRProcessor:
|
|
| 115 |
|
| 116 |
# Make the OCR API request
|
| 117 |
try:
|
| 118 |
-
ocr_logger.info(
|
| 119 |
response = requests.post(
|
| 120 |
self.endpoint,
|
| 121 |
files=files,
|
| 122 |
data=payload,
|
| 123 |
-
headers=headers
|
| 124 |
-
timeout=60 # Add 60 second timeout
|
| 125 |
)
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
try:
|
| 134 |
-
response.raise_for_status()
|
| 135 |
-
except Exception as e:
|
| 136 |
-
ocr_logger.error(f"HTTP Error: {str(e)}")
|
| 137 |
return {
|
| 138 |
-
"success":
|
| 139 |
-
"
|
| 140 |
-
"
|
|
|
|
| 141 |
}
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
result = response.json()
|
| 145 |
-
ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}")
|
| 146 |
-
|
| 147 |
-
# Process the OCR results
|
| 148 |
-
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
| 149 |
-
extracted_text = self._extract_text_from_result(result)
|
| 150 |
-
processing_time = time.time() - start_time
|
| 151 |
-
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
| 152 |
-
ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}")
|
| 153 |
-
|
| 154 |
-
return {
|
| 155 |
-
"success": True,
|
| 156 |
-
"text": extracted_text,
|
| 157 |
-
"word_count": len(extracted_text.split()),
|
| 158 |
-
"processing_time_ms": int(processing_time * 1000)
|
| 159 |
-
}
|
| 160 |
-
else:
|
| 161 |
-
error_msg = result.get('ErrorMessage', 'OCR processing failed')
|
| 162 |
-
ocr_logger.error(f"OCR API error: {error_msg}")
|
| 163 |
-
return {
|
| 164 |
-
"success": False,
|
| 165 |
-
"error": error_msg,
|
| 166 |
-
"text": ""
|
| 167 |
-
}
|
| 168 |
-
except ValueError as e:
|
| 169 |
-
ocr_logger.error(f"Invalid JSON response: {str(e)}")
|
| 170 |
return {
|
| 171 |
"success": False,
|
| 172 |
-
"error":
|
| 173 |
"text": ""
|
| 174 |
}
|
| 175 |
|
|
@@ -180,9 +161,6 @@ class OCRProcessor:
|
|
| 180 |
"error": f"OCR API request failed: {str(e)}",
|
| 181 |
"text": ""
|
| 182 |
}
|
| 183 |
-
finally:
|
| 184 |
-
# No need to close file handle as we're using bytes directly
|
| 185 |
-
pass
|
| 186 |
|
| 187 |
def _extract_text_from_result(self, result: Dict) -> str:
|
| 188 |
"""
|
|
@@ -515,14 +493,10 @@ class TextClassifier:
|
|
| 515 |
}
|
| 516 |
|
| 517 |
# Function to handle file upload, OCR processing, and text analysis
|
| 518 |
-
def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
| 519 |
"""
|
| 520 |
Handle file upload, OCR processing, and text analysis
|
| 521 |
"""
|
| 522 |
-
# Use the global classifier
|
| 523 |
-
global classifier
|
| 524 |
-
classifier_to_use = classifier
|
| 525 |
-
|
| 526 |
if file_obj is None:
|
| 527 |
return (
|
| 528 |
"No file uploaded",
|
|
@@ -530,50 +504,35 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
| 530 |
"No file uploaded for analysis"
|
| 531 |
)
|
| 532 |
|
| 533 |
-
#
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
|
| 536 |
try:
|
| 537 |
-
# Create a temporary file with an appropriate extension based on content
|
| 538 |
-
if isinstance(file_obj, bytes):
|
| 539 |
-
content_start = file_obj[:20] # Look at the first few bytes
|
| 540 |
-
|
| 541 |
-
# Default to .bin extension
|
| 542 |
-
file_ext = ".bin"
|
| 543 |
-
|
| 544 |
-
# Try to detect PDF files
|
| 545 |
-
if content_start.startswith(b'%PDF'):
|
| 546 |
-
file_ext = ".pdf"
|
| 547 |
-
# For images, detect by common magic numbers
|
| 548 |
-
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
| 549 |
-
file_ext = ".jpg"
|
| 550 |
-
elif content_start.startswith(b'\x89PNG'): # PNG
|
| 551 |
-
file_ext = ".png"
|
| 552 |
-
elif content_start.startswith(b'GIF'): # GIF
|
| 553 |
-
file_ext = ".gif"
|
| 554 |
-
|
| 555 |
-
# Create a temporary file with the detected extension
|
| 556 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
| 557 |
-
temp_file_path = temp_file.name
|
| 558 |
-
# Write uploaded file data to the temporary file
|
| 559 |
-
temp_file.write(file_obj)
|
| 560 |
-
logger.info(f"Saved uploaded file to {temp_file_path}")
|
| 561 |
-
else:
|
| 562 |
-
# Handle other file object types (should not typically happen with Gradio)
|
| 563 |
-
logger.error(f"Unexpected file object type: {type(file_obj)}")
|
| 564 |
-
return (
|
| 565 |
-
"File upload error",
|
| 566 |
-
"Unexpected file format",
|
| 567 |
-
"Unable to process this file format"
|
| 568 |
-
)
|
| 569 |
-
|
| 570 |
# Process the file with OCR
|
| 571 |
ocr_processor = OCRProcessor()
|
| 572 |
-
logger.info(f"Starting OCR processing for file: {temp_file_path}")
|
| 573 |
ocr_result = ocr_processor.process_file(temp_file_path)
|
| 574 |
|
| 575 |
if not ocr_result["success"]:
|
| 576 |
-
logger.error(f"OCR processing failed: {ocr_result['error']}")
|
| 577 |
return (
|
| 578 |
"OCR Processing Error",
|
| 579 |
ocr_result["error"],
|
|
@@ -582,11 +541,9 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
| 582 |
|
| 583 |
# Get the extracted text
|
| 584 |
extracted_text = ocr_result["text"]
|
| 585 |
-
logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words")
|
| 586 |
|
| 587 |
# If no text was extracted
|
| 588 |
if not extracted_text.strip():
|
| 589 |
-
logger.warning("No text extracted from file")
|
| 590 |
return (
|
| 591 |
"No text extracted",
|
| 592 |
"The OCR process did not extract any text from the uploaded file.",
|
|
@@ -594,24 +551,12 @@ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
|
|
| 594 |
)
|
| 595 |
|
| 596 |
# Call the original text analysis function with the extracted text
|
| 597 |
-
|
| 598 |
-
return analyze_text(extracted_text, mode, classifier_to_use)
|
| 599 |
|
| 600 |
-
except Exception as e:
|
| 601 |
-
logger.error(f"Error in file upload processing: {str(e)}")
|
| 602 |
-
return (
|
| 603 |
-
"Error Processing File",
|
| 604 |
-
f"An error occurred while processing the file: {str(e)}",
|
| 605 |
-
"File processing error. Please try again or try a different file."
|
| 606 |
-
)
|
| 607 |
finally:
|
| 608 |
# Clean up the temporary file
|
| 609 |
-
if
|
| 610 |
-
|
| 611 |
-
os.remove(temp_file_path)
|
| 612 |
-
logger.info(f"Removed temporary file: {temp_file_path}")
|
| 613 |
-
except Exception as e:
|
| 614 |
-
logger.warning(f"Could not remove temporary file: {str(e)}")
|
| 615 |
|
| 616 |
def initialize_excel_log():
|
| 617 |
"""Initialize the Excel log file if it doesn't exist."""
|
|
@@ -825,7 +770,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 825 |
# Initialize the classifier globally
|
| 826 |
classifier = TextClassifier()
|
| 827 |
|
| 828 |
-
# Create Gradio interface with a file upload button
|
| 829 |
def create_interface():
|
| 830 |
# Custom CSS for the interface
|
| 831 |
css = """
|
|
@@ -835,46 +780,49 @@ def create_interface():
|
|
| 835 |
color: white !important;
|
| 836 |
}
|
| 837 |
|
| 838 |
-
/* Style the file upload to
|
| 839 |
-
.file-upload {
|
| 840 |
-
|
| 841 |
-
|
|
|
|
| 842 |
}
|
| 843 |
|
| 844 |
-
/* Hide file preview
|
| 845 |
-
.file-upload .file-preview
|
| 846 |
-
.file-upload p:not(.file-upload p:first-child),
|
| 847 |
-
.file-upload svg,
|
| 848 |
-
.file-upload [data-testid="chunkFileDropArea"],
|
| 849 |
-
.file-upload .file-drop {
|
| 850 |
display: none !important;
|
| 851 |
}
|
| 852 |
|
| 853 |
-
/* Style the upload button */
|
| 854 |
-
.file-upload
|
|
|
|
| 855 |
height: 40px !important;
|
| 856 |
-
width: 100% !important;
|
| 857 |
background-color: #f0f0f0 !important;
|
| 858 |
border: 1px solid #d9d9d9 !important;
|
| 859 |
border-radius: 4px !important;
|
| 860 |
-
color: #333 !important;
|
| 861 |
-
font-size: 14px !important;
|
| 862 |
display: flex !important;
|
| 863 |
align-items: center !important;
|
| 864 |
justify-content: center !important;
|
|
|
|
| 865 |
margin: 0 !important;
|
| 866 |
-
padding: 0 !important;
|
| 867 |
}
|
| 868 |
|
| 869 |
-
/*
|
| 870 |
-
.file-upload
|
| 871 |
display: none !important;
|
| 872 |
}
|
| 873 |
|
| 874 |
-
/*
|
| 875 |
-
.file-upload [data-testid="
|
| 876 |
-
|
| 877 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 878 |
}
|
| 879 |
"""
|
| 880 |
|
|
@@ -905,12 +853,15 @@ def create_interface():
|
|
| 905 |
show_label=False
|
| 906 |
)
|
| 907 |
|
| 908 |
-
#
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
|
|
|
|
|
|
|
|
|
| 914 |
|
| 915 |
# Analyze button
|
| 916 |
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
|
@@ -922,13 +873,14 @@ def create_interface():
|
|
| 922 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
| 923 |
|
| 924 |
# Connect components
|
|
|
|
| 925 |
analyze_btn.click(
|
| 926 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 927 |
inputs=[text_input, mode_selection],
|
| 928 |
outputs=[output_html, output_sentences, output_result]
|
| 929 |
)
|
| 930 |
|
| 931 |
-
#
|
| 932 |
file_upload.change(
|
| 933 |
fn=handle_file_upload_and_analyze,
|
| 934 |
inputs=[file_upload, mode_selection],
|
|
@@ -936,7 +888,7 @@ def create_interface():
|
|
| 936 |
)
|
| 937 |
|
| 938 |
return demo
|
| 939 |
-
|
| 940 |
# Setup the app with CORS middleware
|
| 941 |
def setup_app():
|
| 942 |
demo = create_interface()
|
|
|
|
| 33 |
WINDOW_SIZE = 6
|
| 34 |
WINDOW_OVERLAP = 2
|
| 35 |
CONFIDENCE_THRESHOLD = 0.65
|
| 36 |
+
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 37 |
+
MAX_WORKERS = 4 # Number of worker threads for processing
|
|
|
|
| 38 |
|
| 39 |
+
# IMPORTANT: Set PyTorch thread configuration at the module level
|
| 40 |
+
# before any parallel work starts
|
| 41 |
if not torch.cuda.is_available():
|
| 42 |
+
# Set thread configuration only once at the beginning
|
| 43 |
torch.set_num_threads(MAX_WORKERS)
|
| 44 |
try:
|
| 45 |
+
# Only set interop threads if it hasn't been set already
|
| 46 |
torch.set_num_interop_threads(MAX_WORKERS)
|
| 47 |
except RuntimeError as e:
|
| 48 |
logger.warning(f"Could not set interop threads: {str(e)}")
|
| 49 |
|
| 50 |
+
# Get password hash from environment variable (more secure)
|
| 51 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
| 52 |
|
| 53 |
if not ADMIN_PASSWORD_HASH:
|
| 54 |
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
|
| 55 |
|
| 56 |
+
# Excel file path for logs
|
| 57 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
| 58 |
+
|
| 59 |
+
# OCR API settings
|
| 60 |
+
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
| 61 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
| 62 |
OCR_MAX_PDF_PAGES = 3
|
| 63 |
OCR_MAX_FILE_SIZE_MB = 1
|
| 64 |
|
| 65 |
+
# Configure logging for OCR module
|
| 66 |
ocr_logger = logging.getLogger("ocr_module")
|
| 67 |
ocr_logger.setLevel(logging.INFO)
|
| 68 |
|
|
|
|
| 95 |
file_type = self._get_file_type(file_path)
|
| 96 |
ocr_logger.info(f"Detected file type: {file_type}")
|
| 97 |
|
| 98 |
+
# Prepare the API request
|
| 99 |
+
with open(file_path, 'rb') as f:
|
| 100 |
+
file_data = f.read()
|
| 101 |
+
|
| 102 |
# Set up API parameters
|
| 103 |
payload = {
|
| 104 |
'isOverlayRequired': 'false',
|
|
|
|
| 113 |
ocr_logger.info("PDF document detected, enforcing page limit")
|
| 114 |
payload['filetype'] = 'PDF'
|
| 115 |
|
| 116 |
+
# Prepare file for OCR API
|
|
|
|
|
|
|
|
|
|
| 117 |
files = {
|
| 118 |
'file': (os.path.basename(file_path), file_data, file_type)
|
| 119 |
}
|
|
|
|
| 124 |
|
| 125 |
# Make the OCR API request
|
| 126 |
try:
|
| 127 |
+
ocr_logger.info("Sending request to OCR.space API")
|
| 128 |
response = requests.post(
|
| 129 |
self.endpoint,
|
| 130 |
files=files,
|
| 131 |
data=payload,
|
| 132 |
+
headers=headers
|
|
|
|
| 133 |
)
|
| 134 |
+
response.raise_for_status()
|
| 135 |
+
result = response.json()
|
| 136 |
|
| 137 |
+
# Process the OCR results
|
| 138 |
+
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
| 139 |
+
extracted_text = self._extract_text_from_result(result)
|
| 140 |
+
processing_time = time.time() - start_time
|
| 141 |
+
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
| 142 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
return {
|
| 144 |
+
"success": True,
|
| 145 |
+
"text": extracted_text,
|
| 146 |
+
"word_count": len(extracted_text.split()),
|
| 147 |
+
"processing_time_ms": int(processing_time * 1000)
|
| 148 |
}
|
| 149 |
+
else:
|
| 150 |
+
ocr_logger.error(f"OCR API error: {result.get('ErrorMessage', 'Unknown error')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return {
|
| 152 |
"success": False,
|
| 153 |
+
"error": result.get('ErrorMessage', 'OCR processing failed'),
|
| 154 |
"text": ""
|
| 155 |
}
|
| 156 |
|
|
|
|
| 161 |
"error": f"OCR API request failed: {str(e)}",
|
| 162 |
"text": ""
|
| 163 |
}
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
def _extract_text_from_result(self, result: Dict) -> str:
|
| 166 |
"""
|
|
|
|
| 493 |
}
|
| 494 |
|
| 495 |
# Function to handle file upload, OCR processing, and text analysis
|
| 496 |
+
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
| 497 |
"""
|
| 498 |
Handle file upload, OCR processing, and text analysis
|
| 499 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
if file_obj is None:
|
| 501 |
return (
|
| 502 |
"No file uploaded",
|
|
|
|
| 504 |
"No file uploaded for analysis"
|
| 505 |
)
|
| 506 |
|
| 507 |
+
# Create a temporary file with an appropriate extension based on content
|
| 508 |
+
content_start = file_obj[:20] # Look at the first few bytes
|
| 509 |
+
|
| 510 |
+
# Default to .bin extension
|
| 511 |
+
file_ext = ".bin"
|
| 512 |
+
|
| 513 |
+
# Try to detect PDF files
|
| 514 |
+
if content_start.startswith(b'%PDF'):
|
| 515 |
+
file_ext = ".pdf"
|
| 516 |
+
# For images, detect by common magic numbers
|
| 517 |
+
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
| 518 |
+
file_ext = ".jpg"
|
| 519 |
+
elif content_start.startswith(b'\x89PNG'): # PNG
|
| 520 |
+
file_ext = ".png"
|
| 521 |
+
elif content_start.startswith(b'GIF'): # GIF
|
| 522 |
+
file_ext = ".gif"
|
| 523 |
+
|
| 524 |
+
# Create a temporary file with the detected extension
|
| 525 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
| 526 |
+
temp_file_path = temp_file.name
|
| 527 |
+
# Write uploaded file data to the temporary file
|
| 528 |
+
temp_file.write(file_obj)
|
| 529 |
|
| 530 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
# Process the file with OCR
|
| 532 |
ocr_processor = OCRProcessor()
|
|
|
|
| 533 |
ocr_result = ocr_processor.process_file(temp_file_path)
|
| 534 |
|
| 535 |
if not ocr_result["success"]:
|
|
|
|
| 536 |
return (
|
| 537 |
"OCR Processing Error",
|
| 538 |
ocr_result["error"],
|
|
|
|
| 541 |
|
| 542 |
# Get the extracted text
|
| 543 |
extracted_text = ocr_result["text"]
|
|
|
|
| 544 |
|
| 545 |
# If no text was extracted
|
| 546 |
if not extracted_text.strip():
|
|
|
|
| 547 |
return (
|
| 548 |
"No text extracted",
|
| 549 |
"The OCR process did not extract any text from the uploaded file.",
|
|
|
|
| 551 |
)
|
| 552 |
|
| 553 |
# Call the original text analysis function with the extracted text
|
| 554 |
+
return analyze_text(extracted_text, mode, classifier)
|
|
|
|
| 555 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
finally:
|
| 557 |
# Clean up the temporary file
|
| 558 |
+
if os.path.exists(temp_file_path):
|
| 559 |
+
os.remove(temp_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
def initialize_excel_log():
|
| 562 |
"""Initialize the Excel log file if it doesn't exist."""
|
|
|
|
| 770 |
# Initialize the classifier globally
|
| 771 |
classifier = TextClassifier()
|
| 772 |
|
| 773 |
+
# Create Gradio interface with a properly sized file upload button
|
| 774 |
def create_interface():
|
| 775 |
# Custom CSS for the interface
|
| 776 |
css = """
|
|
|
|
| 780 |
color: white !important;
|
| 781 |
}
|
| 782 |
|
| 783 |
+
/* Style the file upload container to match the radio buttons */
|
| 784 |
+
.file-upload-container {
|
| 785 |
+
margin-left: 15px;
|
| 786 |
+
display: inline-block;
|
| 787 |
+
vertical-align: middle;
|
| 788 |
}
|
| 789 |
|
| 790 |
+
/* Hide file info and preview */
|
| 791 |
+
.file-upload-container .file-preview {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 792 |
display: none !important;
|
| 793 |
}
|
| 794 |
|
| 795 |
+
/* Style the upload button to a proper size */
|
| 796 |
+
.file-upload-container [data-testid="chunkFileDropArea"] {
|
| 797 |
+
width: 150px !important;
|
| 798 |
height: 40px !important;
|
|
|
|
| 799 |
background-color: #f0f0f0 !important;
|
| 800 |
border: 1px solid #d9d9d9 !important;
|
| 801 |
border-radius: 4px !important;
|
|
|
|
|
|
|
| 802 |
display: flex !important;
|
| 803 |
align-items: center !important;
|
| 804 |
justify-content: center !important;
|
| 805 |
+
padding: 0 10px !important;
|
| 806 |
margin: 0 !important;
|
|
|
|
| 807 |
}
|
| 808 |
|
| 809 |
+
/* Show only the "Upload Document" text */
|
| 810 |
+
.file-upload-container [data-testid="chunkFileDropArea"] * {
|
| 811 |
display: none !important;
|
| 812 |
}
|
| 813 |
|
| 814 |
+
/* Add a new label */
|
| 815 |
+
.file-upload-container [data-testid="chunkFileDropArea"]::before {
|
| 816 |
+
content: "Upload Document" !important;
|
| 817 |
+
display: block !important;
|
| 818 |
+
font-size: 14px !important;
|
| 819 |
+
color: #444 !important;
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
/* Hover effect */
|
| 823 |
+
.file-upload-container [data-testid="chunkFileDropArea"]:hover {
|
| 824 |
+
background-color: #e0e0e0 !important;
|
| 825 |
+
cursor: pointer !important;
|
| 826 |
}
|
| 827 |
"""
|
| 828 |
|
|
|
|
| 853 |
show_label=False
|
| 854 |
)
|
| 855 |
|
| 856 |
+
# File upload component with compact styling
|
| 857 |
+
with gr.Column(elem_classes=["file-upload-container"], scale=0):
|
| 858 |
+
file_upload = gr.File(
|
| 859 |
+
file_types=["image", "pdf", "doc", "docx"],
|
| 860 |
+
type="binary",
|
| 861 |
+
label="",
|
| 862 |
+
show_label=False,
|
| 863 |
+
elem_id="file-upload"
|
| 864 |
+
)
|
| 865 |
|
| 866 |
# Analyze button
|
| 867 |
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
|
|
|
| 873 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
| 874 |
|
| 875 |
# Connect components
|
| 876 |
+
# 1. Analyze button click
|
| 877 |
analyze_btn.click(
|
| 878 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 879 |
inputs=[text_input, mode_selection],
|
| 880 |
outputs=[output_html, output_sentences, output_result]
|
| 881 |
)
|
| 882 |
|
| 883 |
+
# 2. File upload change event
|
| 884 |
file_upload.change(
|
| 885 |
fn=handle_file_upload_and_analyze,
|
| 886 |
inputs=[file_upload, mode_selection],
|
|
|
|
| 888 |
)
|
| 889 |
|
| 890 |
return demo
|
| 891 |
+
|
| 892 |
# Setup the app with CORS middleware
|
| 893 |
def setup_app():
|
| 894 |
demo = create_interface()
|