Update app.py
Browse files
app.py
CHANGED
|
@@ -163,7 +163,7 @@ class TextClassifier:
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def detailed_scan(self, text: str) -> Dict:
|
| 166 |
-
"""
|
| 167 |
if not text.strip():
|
| 168 |
return {
|
| 169 |
'sentence_predictions': [],
|
|
@@ -180,18 +180,22 @@ class TextClassifier:
|
|
| 180 |
if not sentences:
|
| 181 |
return {}
|
| 182 |
|
| 183 |
-
#
|
| 184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
|
|
|
| 185 |
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
-
# Process windows in batches
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
| 194 |
|
|
|
|
| 195 |
inputs = self.tokenizer(
|
| 196 |
batch_windows,
|
| 197 |
truncation=True,
|
|
@@ -204,45 +208,46 @@ class TextClassifier:
|
|
| 204 |
outputs = self.model(**inputs)
|
| 205 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 206 |
|
| 207 |
-
#
|
| 208 |
for window_idx, indices in enumerate(batch_indices):
|
| 209 |
center_idx = len(indices) // 2
|
| 210 |
-
|
| 211 |
-
|
| 212 |
|
|
|
|
| 213 |
for pos, sent_idx in enumerate(indices):
|
| 214 |
-
# Apply higher weight to center sentence
|
| 215 |
weight = center_weight if pos == center_idx else edge_weight
|
| 216 |
-
|
| 217 |
-
sentence_scores[sent_idx]['
|
| 218 |
-
sentence_scores[sent_idx]['
|
| 219 |
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
sentence_predictions = []
|
|
|
|
| 222 |
for i in range(len(sentences)):
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 230 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 231 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 232 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 233 |
-
|
| 234 |
-
# Check if we're at a prediction boundary
|
| 235 |
-
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 236 |
-
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 237 |
-
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
sentence_predictions.append({
|
| 248 |
'sentence': sentences[i],
|
|
@@ -251,6 +256,7 @@ class TextClassifier:
|
|
| 251 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 252 |
'confidence': max(human_prob, ai_prob)
|
| 253 |
})
|
|
|
|
| 254 |
|
| 255 |
return {
|
| 256 |
'sentence_predictions': sentence_predictions,
|
|
|
|
| 163 |
}
|
| 164 |
|
| 165 |
def detailed_scan(self, text: str) -> Dict:
|
| 166 |
+
"""Optimized detailed scan with sentence-level analysis."""
|
| 167 |
if not text.strip():
|
| 168 |
return {
|
| 169 |
'sentence_predictions': [],
|
|
|
|
| 180 |
if not sentences:
|
| 181 |
return {}
|
| 182 |
|
| 183 |
+
# Pre-calculate window information
|
| 184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 185 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0, 'appearances': 0} for i in range(len(sentences))}
|
| 186 |
|
| 187 |
+
# Calculate weights once
|
| 188 |
+
center_weight = 0.7
|
| 189 |
+
edge_weight = 0.3 / (WINDOW_SIZE - 1) if WINDOW_SIZE > 1 else 0.3
|
| 190 |
|
| 191 |
+
# Process all windows in larger batches
|
| 192 |
+
batch_size = min(32, len(windows)) # Increased batch size
|
| 193 |
+
for i in range(0, len(windows), batch_size):
|
| 194 |
+
batch_end = min(i + batch_size, len(windows))
|
| 195 |
+
batch_windows = windows[i:batch_end]
|
| 196 |
+
batch_indices = window_sentence_indices[i:batch_end]
|
| 197 |
|
| 198 |
+
# Process batch
|
| 199 |
inputs = self.tokenizer(
|
| 200 |
batch_windows,
|
| 201 |
truncation=True,
|
|
|
|
| 208 |
outputs = self.model(**inputs)
|
| 209 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 210 |
|
| 211 |
+
# Process each window in the batch
|
| 212 |
for window_idx, indices in enumerate(batch_indices):
|
| 213 |
center_idx = len(indices) // 2
|
| 214 |
+
window_human_prob = probs[window_idx][1].item()
|
| 215 |
+
window_ai_prob = probs[window_idx][0].item()
|
| 216 |
|
| 217 |
+
# Update scores for all sentences in this window
|
| 218 |
for pos, sent_idx in enumerate(indices):
|
|
|
|
| 219 |
weight = center_weight if pos == center_idx else edge_weight
|
| 220 |
+
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
| 221 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
| 222 |
+
sentence_scores[sent_idx]['appearances'] += weight
|
| 223 |
|
| 224 |
+
del inputs, outputs, probs
|
| 225 |
+
if torch.cuda.is_available():
|
| 226 |
+
torch.cuda.empty_cache()
|
| 227 |
+
|
| 228 |
+
# Calculate final predictions
|
| 229 |
sentence_predictions = []
|
| 230 |
+
prev_pred = None
|
| 231 |
for i in range(len(sentences)):
|
| 232 |
+
scores = sentence_scores[i]
|
| 233 |
+
if scores['appearances'] > 0:
|
| 234 |
+
# Calculate base probabilities
|
| 235 |
+
human_prob = scores['human_prob'] / scores['appearances']
|
| 236 |
+
ai_prob = scores['ai_prob'] / scores['appearances']
|
| 237 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
# Only apply smoothing at actual prediction boundaries
|
| 240 |
+
if i > 0 and prev_pred and current_pred != prev_pred:
|
| 241 |
+
# Simple smoothing only at boundaries
|
| 242 |
+
smooth_factor = 0.1
|
| 243 |
+
if i < len(sentences) - 1:
|
| 244 |
+
next_scores = sentence_scores[i + 1]
|
| 245 |
+
next_human = next_scores['human_prob'] / next_scores['appearances']
|
| 246 |
+
next_ai = next_scores['ai_prob'] / next_scores['appearances']
|
| 247 |
+
|
| 248 |
+
# Apply minimal smoothing
|
| 249 |
+
human_prob = human_prob * (1 - smooth_factor) + next_human * smooth_factor
|
| 250 |
+
ai_prob = ai_prob * (1 - smooth_factor) + next_ai * smooth_factor
|
| 251 |
|
| 252 |
sentence_predictions.append({
|
| 253 |
'sentence': sentences[i],
|
|
|
|
| 256 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 257 |
'confidence': max(human_prob, ai_prob)
|
| 258 |
})
|
| 259 |
+
prev_pred = current_pred
|
| 260 |
|
| 261 |
return {
|
| 262 |
'sentence_predictions': sentence_predictions,
|