Update app.py
Browse files
app.py
CHANGED
|
@@ -11,11 +11,10 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
import time
|
| 14 |
-
import
|
| 15 |
from datetime import datetime
|
| 16 |
import threading
|
| 17 |
import random
|
| 18 |
-
from openpyxl import load_workbook
|
| 19 |
|
| 20 |
# Configure logging
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -30,53 +29,54 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
| 30 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 31 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 32 |
|
| 33 |
-
class
|
| 34 |
-
def __init__(self, log_dir="
|
| 35 |
-
"""Initialize the
|
| 36 |
|
| 37 |
Args:
|
| 38 |
-
log_dir: Directory to store log files
|
| 39 |
-
excel_file: Specific Excel file name (defaults to predictions_YYYY-MM.xlsx)
|
| 40 |
"""
|
| 41 |
self.log_dir = log_dir
|
| 42 |
os.makedirs(log_dir, exist_ok=True)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
if not os.path.exists(self.excel_path):
|
| 53 |
-
self._create_excel_file()
|
| 54 |
-
|
| 55 |
-
# Create a lock for thread safety
|
| 56 |
-
self.file_lock = threading.Lock()
|
| 57 |
-
|
| 58 |
-
def _create_excel_file(self):
|
| 59 |
-
"""Create a new Excel file with appropriate sheets and headers."""
|
| 60 |
-
# Create DataFrame for metrics
|
| 61 |
-
metrics_df = pd.DataFrame(columns=[
|
| 62 |
-
'timestamp', 'word_count', 'mode', 'prediction',
|
| 63 |
'confidence', 'prediction_time_seconds', 'num_sentences'
|
| 64 |
-
]
|
| 65 |
|
| 66 |
-
|
| 67 |
-
text_df = pd.DataFrame(columns=[
|
| 68 |
-
'entry_id', 'timestamp', 'text'
|
| 69 |
-
])
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
| 74 |
-
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def log_prediction(self, prediction_data, store_text=True):
|
| 79 |
-
"""Log prediction data to
|
| 80 |
|
| 81 |
Args:
|
| 82 |
prediction_data: Dictionary containing prediction metrics
|
|
@@ -92,89 +92,95 @@ class ExcelLogger:
|
|
| 92 |
if 'timestamp' not in prediction_data:
|
| 93 |
prediction_data['timestamp'] = datetime.now().isoformat()
|
| 94 |
|
| 95 |
-
# Add entry_id to
|
| 96 |
metrics_data = prediction_data.copy()
|
| 97 |
metrics_data['entry_id'] = entry_id
|
| 98 |
|
| 99 |
-
# Start a thread to write data
|
| 100 |
thread = threading.Thread(
|
| 101 |
-
target=self.
|
| 102 |
args=(metrics_data, text, entry_id, store_text)
|
| 103 |
)
|
| 104 |
thread.daemon = True
|
| 105 |
thread.start()
|
| 106 |
|
| 107 |
-
def
|
| 108 |
-
"""Write data to
|
| 109 |
max_retries = 5
|
| 110 |
retry_delay = 0.5
|
| 111 |
|
|
|
|
| 112 |
for attempt in range(max_retries):
|
| 113 |
try:
|
| 114 |
-
with self.
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
'timestamp': metrics_data['timestamp'],
|
| 131 |
-
'text': text
|
| 132 |
-
}])
|
| 133 |
-
text_df = pd.concat([text_df, new_text], ignore_index=True)
|
| 134 |
-
except:
|
| 135 |
-
# If TextData sheet doesn't exist or can't be read
|
| 136 |
-
text_df = pd.DataFrame([{
|
| 137 |
-
'entry_id': entry_id,
|
| 138 |
-
'timestamp': metrics_data['timestamp'],
|
| 139 |
-
'text': text
|
| 140 |
-
}])
|
| 141 |
-
|
| 142 |
-
# Write back to Excel
|
| 143 |
-
with pd.ExcelWriter(self.excel_path, engine='openpyxl', mode='a',
|
| 144 |
-
if_sheet_exists='replace') as writer:
|
| 145 |
-
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
| 146 |
-
if store_text and text:
|
| 147 |
-
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
| 148 |
-
|
| 149 |
-
# Successfully wrote to file
|
| 150 |
break
|
| 151 |
-
|
| 152 |
except Exception as e:
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
time.sleep(retry_delay * (attempt + 1)) # Progressive backoff
|
| 156 |
else:
|
| 157 |
-
# If all retries fail,
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
#
|
| 170 |
if store_text and text:
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
class TextWindowProcessor:
|
|
@@ -480,7 +486,16 @@ class TextClassifier:
|
|
| 480 |
}
|
| 481 |
|
| 482 |
# Initialize the logger
|
| 483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 486 |
"""Analyze text using specified mode and return formatted results."""
|
|
@@ -532,7 +547,10 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 532 |
"num_sentences": 0, # No sentence analysis in quick mode
|
| 533 |
"text": text
|
| 534 |
}
|
| 535 |
-
|
|
|
|
|
|
|
|
|
|
| 536 |
|
| 537 |
else:
|
| 538 |
analysis = classifier.detailed_scan(text)
|
|
@@ -576,14 +594,17 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 576 |
"num_sentences": num_sentences,
|
| 577 |
"text": text
|
| 578 |
}
|
| 579 |
-
|
|
|
|
|
|
|
|
|
|
| 580 |
|
| 581 |
return output
|
| 582 |
|
| 583 |
# Initialize the classifier globally
|
| 584 |
classifier = TextClassifier()
|
| 585 |
|
| 586 |
-
# Create Gradio interface
|
| 587 |
demo = gr.Interface(
|
| 588 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 589 |
inputs=[
|
|
@@ -619,8 +640,26 @@ app.add_middleware(
|
|
| 619 |
allow_headers=["*"],
|
| 620 |
)
|
| 621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
# Ensure CORS is applied before launching
|
| 623 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 624 |
demo.queue()
|
| 625 |
demo.launch(
|
| 626 |
server_name="0.0.0.0",
|
|
|
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
import time
|
| 14 |
+
import csv
|
| 15 |
from datetime import datetime
|
| 16 |
import threading
|
| 17 |
import random
|
|
|
|
| 18 |
|
| 19 |
# Configure logging
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 29 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 30 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 31 |
|
| 32 |
+
class CSVLogger:
|
| 33 |
+
def __init__(self, log_dir="."):
|
| 34 |
+
"""Initialize the CSV logger.
|
| 35 |
|
| 36 |
Args:
|
| 37 |
+
log_dir: Directory to store CSV log files
|
|
|
|
| 38 |
"""
|
| 39 |
self.log_dir = log_dir
|
| 40 |
os.makedirs(log_dir, exist_ok=True)
|
| 41 |
|
| 42 |
+
# Create monthly CSV files
|
| 43 |
+
current_month = datetime.now().strftime('%Y-%m')
|
| 44 |
+
self.metrics_path = os.path.join(log_dir, f"metrics_{current_month}.csv")
|
| 45 |
+
self.text_path = os.path.join(log_dir, f"text_data_{current_month}.csv")
|
| 46 |
|
| 47 |
+
# Define headers
|
| 48 |
+
self.metrics_headers = [
|
| 49 |
+
'entry_id', 'timestamp', 'word_count', 'mode', 'prediction',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
'confidence', 'prediction_time_seconds', 'num_sentences'
|
| 51 |
+
]
|
| 52 |
|
| 53 |
+
self.text_headers = ['entry_id', 'timestamp', 'text']
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Initialize the files if they don't exist
|
| 56 |
+
self._initialize_files()
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Create locks for thread safety
|
| 59 |
+
self.metrics_lock = threading.Lock()
|
| 60 |
+
self.text_lock = threading.Lock()
|
| 61 |
+
|
| 62 |
+
print(f"CSV logger initialized with files at: {os.path.abspath(self.metrics_path)}")
|
| 63 |
+
|
| 64 |
+
def _initialize_files(self):
|
| 65 |
+
"""Create the CSV files with headers if they don't exist."""
|
| 66 |
+
# Initialize metrics file
|
| 67 |
+
if not os.path.exists(self.metrics_path):
|
| 68 |
+
with open(self.metrics_path, 'w', newline='') as f:
|
| 69 |
+
writer = csv.writer(f)
|
| 70 |
+
writer.writerow(self.metrics_headers)
|
| 71 |
+
|
| 72 |
+
# Initialize text data file
|
| 73 |
+
if not os.path.exists(self.text_path):
|
| 74 |
+
with open(self.text_path, 'w', newline='') as f:
|
| 75 |
+
writer = csv.writer(f)
|
| 76 |
+
writer.writerow(self.text_headers)
|
| 77 |
|
| 78 |
def log_prediction(self, prediction_data, store_text=True):
|
| 79 |
+
"""Log prediction data to CSV files.
|
| 80 |
|
| 81 |
Args:
|
| 82 |
prediction_data: Dictionary containing prediction metrics
|
|
|
|
| 92 |
if 'timestamp' not in prediction_data:
|
| 93 |
prediction_data['timestamp'] = datetime.now().isoformat()
|
| 94 |
|
| 95 |
+
# Add entry_id to metrics data
|
| 96 |
metrics_data = prediction_data.copy()
|
| 97 |
metrics_data['entry_id'] = entry_id
|
| 98 |
|
| 99 |
+
# Start a thread to write data
|
| 100 |
thread = threading.Thread(
|
| 101 |
+
target=self._write_to_csv,
|
| 102 |
args=(metrics_data, text, entry_id, store_text)
|
| 103 |
)
|
| 104 |
thread.daemon = True
|
| 105 |
thread.start()
|
| 106 |
|
| 107 |
+
def _write_to_csv(self, metrics_data, text, entry_id, store_text):
|
| 108 |
+
"""Write data to CSV files with retry mechanism."""
|
| 109 |
max_retries = 5
|
| 110 |
retry_delay = 0.5
|
| 111 |
|
| 112 |
+
# Write metrics data
|
| 113 |
for attempt in range(max_retries):
|
| 114 |
try:
|
| 115 |
+
with self.metrics_lock:
|
| 116 |
+
with open(self.metrics_path, 'a', newline='') as f:
|
| 117 |
+
writer = csv.writer(f)
|
| 118 |
+
# Prepare row in the correct order based on headers
|
| 119 |
+
row = [
|
| 120 |
+
metrics_data.get('entry_id', ''),
|
| 121 |
+
metrics_data.get('timestamp', ''),
|
| 122 |
+
metrics_data.get('word_count', 0),
|
| 123 |
+
metrics_data.get('mode', ''),
|
| 124 |
+
metrics_data.get('prediction', ''),
|
| 125 |
+
metrics_data.get('confidence', 0.0),
|
| 126 |
+
metrics_data.get('prediction_time_seconds', 0.0),
|
| 127 |
+
metrics_data.get('num_sentences', 0)
|
| 128 |
+
]
|
| 129 |
+
writer.writerow(row)
|
| 130 |
+
print(f"Successfully wrote metrics to CSV, entry_id: {entry_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
break
|
|
|
|
| 132 |
except Exception as e:
|
| 133 |
+
print(f"Error writing metrics to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
| 134 |
+
time.sleep(retry_delay * (attempt + 1))
|
|
|
|
| 135 |
else:
|
| 136 |
+
# If all retries fail, write to backup file
|
| 137 |
+
backup_path = os.path.join(self.log_dir, f"metrics_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
| 138 |
+
try:
|
| 139 |
+
with open(backup_path, 'w', newline='') as f:
|
| 140 |
+
writer = csv.writer(f)
|
| 141 |
+
writer.writerow(self.metrics_headers)
|
| 142 |
+
row = [
|
| 143 |
+
metrics_data.get('entry_id', ''),
|
| 144 |
+
metrics_data.get('timestamp', ''),
|
| 145 |
+
metrics_data.get('word_count', 0),
|
| 146 |
+
metrics_data.get('mode', ''),
|
| 147 |
+
metrics_data.get('prediction', ''),
|
| 148 |
+
metrics_data.get('confidence', 0.0),
|
| 149 |
+
metrics_data.get('prediction_time_seconds', 0.0),
|
| 150 |
+
metrics_data.get('num_sentences', 0)
|
| 151 |
+
]
|
| 152 |
+
writer.writerow(row)
|
| 153 |
+
print(f"Wrote metrics backup to {backup_path}")
|
| 154 |
+
except Exception as e:
|
| 155 |
+
print(f"Error writing metrics backup: {e}")
|
| 156 |
|
| 157 |
+
# Write text data if requested
|
| 158 |
if store_text and text:
|
| 159 |
+
for attempt in range(max_retries):
|
| 160 |
+
try:
|
| 161 |
+
with self.text_lock:
|
| 162 |
+
with open(self.text_path, 'a', newline='') as f:
|
| 163 |
+
writer = csv.writer(f)
|
| 164 |
+
# Handle potential newlines in text by replacing them
|
| 165 |
+
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
| 166 |
+
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
| 167 |
+
print(f"Successfully wrote text data to CSV, entry_id: {entry_id}")
|
| 168 |
+
break
|
| 169 |
+
except Exception as e:
|
| 170 |
+
print(f"Error writing text data to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
| 171 |
+
time.sleep(retry_delay * (attempt + 1))
|
| 172 |
+
else:
|
| 173 |
+
# If all retries fail, write to backup file
|
| 174 |
+
backup_path = os.path.join(self.log_dir, f"text_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
| 175 |
+
try:
|
| 176 |
+
with open(backup_path, 'w', newline='') as f:
|
| 177 |
+
writer = csv.writer(f)
|
| 178 |
+
writer.writerow(self.text_headers)
|
| 179 |
+
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
| 180 |
+
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
| 181 |
+
print(f"Wrote text data backup to {backup_path}")
|
| 182 |
+
except Exception as e:
|
| 183 |
+
print(f"Error writing text data backup: {e}")
|
| 184 |
|
| 185 |
|
| 186 |
class TextWindowProcessor:
|
|
|
|
| 486 |
}
|
| 487 |
|
| 488 |
# Initialize the logger
|
| 489 |
+
csv_logger = CSVLogger(log_dir=".")
|
| 490 |
+
|
| 491 |
+
# Add file listing endpoint for debugging
|
| 492 |
+
def list_files():
|
| 493 |
+
"""List all files in the current directory and subdirectories."""
|
| 494 |
+
all_files = []
|
| 495 |
+
for root, dirs, files in os.walk('.'):
|
| 496 |
+
for file in files:
|
| 497 |
+
all_files.append(os.path.join(root, file))
|
| 498 |
+
return all_files
|
| 499 |
|
| 500 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 501 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
| 547 |
"num_sentences": 0, # No sentence analysis in quick mode
|
| 548 |
"text": text
|
| 549 |
}
|
| 550 |
+
|
| 551 |
+
# Log to CSV
|
| 552 |
+
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
| 553 |
+
csv_logger.log_prediction(log_data)
|
| 554 |
|
| 555 |
else:
|
| 556 |
analysis = classifier.detailed_scan(text)
|
|
|
|
| 594 |
"num_sentences": num_sentences,
|
| 595 |
"text": text
|
| 596 |
}
|
| 597 |
+
|
| 598 |
+
# Log to CSV
|
| 599 |
+
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
| 600 |
+
csv_logger.log_prediction(log_data)
|
| 601 |
|
| 602 |
return output
|
| 603 |
|
| 604 |
# Initialize the classifier globally
|
| 605 |
classifier = TextClassifier()
|
| 606 |
|
| 607 |
+
# Create Gradio interface
|
| 608 |
demo = gr.Interface(
|
| 609 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 610 |
inputs=[
|
|
|
|
| 640 |
allow_headers=["*"],
|
| 641 |
)
|
| 642 |
|
| 643 |
+
# Add file listing endpoint for debugging
|
| 644 |
+
@app.get("/list_files")
|
| 645 |
+
async def get_files():
|
| 646 |
+
return {"files": list_files()}
|
| 647 |
+
|
| 648 |
# Ensure CORS is applied before launching
|
| 649 |
if __name__ == "__main__":
|
| 650 |
+
# Create empty CSV files if they don't exist
|
| 651 |
+
current_month = datetime.now().strftime('%Y-%m')
|
| 652 |
+
metrics_path = f"metrics_{current_month}.csv"
|
| 653 |
+
text_path = f"text_data_{current_month}.csv"
|
| 654 |
+
|
| 655 |
+
print(f"Current directory: {os.getcwd()}")
|
| 656 |
+
print(f"Looking for CSV files: {metrics_path}, {text_path}")
|
| 657 |
+
|
| 658 |
+
if not os.path.exists(metrics_path):
|
| 659 |
+
print(f"Creating metrics CSV file: {metrics_path}")
|
| 660 |
+
if not os.path.exists(text_path):
|
| 661 |
+
print(f"Creating text data CSV file: {text_path}")
|
| 662 |
+
|
| 663 |
demo.queue()
|
| 664 |
demo.launch(
|
| 665 |
server_name="0.0.0.0",
|