Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,12 @@ import gradio as gr
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Configure logging
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -24,6 +30,153 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
| 24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 25 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class TextWindowProcessor:
|
| 28 |
def __init__(self):
|
| 29 |
try:
|
|
@@ -176,100 +329,6 @@ class TextClassifier:
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
-
# def detailed_scan(self, text: str) -> Dict:
|
| 180 |
-
# """Original prediction method with modified window handling"""
|
| 181 |
-
# if self.model is None or self.tokenizer is None:
|
| 182 |
-
# self.load_model()
|
| 183 |
-
|
| 184 |
-
# self.model.eval()
|
| 185 |
-
# sentences = self.processor.split_into_sentences(text)
|
| 186 |
-
# if not sentences:
|
| 187 |
-
# return {}
|
| 188 |
-
|
| 189 |
-
# # Create centered windows for each sentence
|
| 190 |
-
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 191 |
-
|
| 192 |
-
# # Track scores for each sentence
|
| 193 |
-
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 194 |
-
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 195 |
-
|
| 196 |
-
# # Process windows in batches
|
| 197 |
-
# batch_size = 16
|
| 198 |
-
# for i in range(0, len(windows), batch_size):
|
| 199 |
-
# batch_windows = windows[i:i + batch_size]
|
| 200 |
-
# batch_indices = window_sentence_indices[i:i + batch_size]
|
| 201 |
-
|
| 202 |
-
# inputs = self.tokenizer(
|
| 203 |
-
# batch_windows,
|
| 204 |
-
# truncation=True,
|
| 205 |
-
# padding=True,
|
| 206 |
-
# max_length=MAX_LENGTH,
|
| 207 |
-
# return_tensors="pt"
|
| 208 |
-
# ).to(self.device)
|
| 209 |
-
|
| 210 |
-
# with torch.no_grad():
|
| 211 |
-
# outputs = self.model(**inputs)
|
| 212 |
-
# probs = F.softmax(outputs.logits, dim=-1)
|
| 213 |
-
|
| 214 |
-
# # Attribute predictions more carefully
|
| 215 |
-
# for window_idx, indices in enumerate(batch_indices):
|
| 216 |
-
# center_idx = len(indices) // 2
|
| 217 |
-
# center_weight = 0.7 # Higher weight for center sentence
|
| 218 |
-
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 219 |
-
|
| 220 |
-
# for pos, sent_idx in enumerate(indices):
|
| 221 |
-
# # Apply higher weight to center sentence
|
| 222 |
-
# weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
-
# sentence_appearances[sent_idx] += weight
|
| 224 |
-
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 225 |
-
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 226 |
-
|
| 227 |
-
# del inputs, outputs, probs
|
| 228 |
-
# if torch.cuda.is_available():
|
| 229 |
-
# torch.cuda.empty_cache()
|
| 230 |
-
|
| 231 |
-
# # Calculate final predictions
|
| 232 |
-
# sentence_predictions = []
|
| 233 |
-
# for i in range(len(sentences)):
|
| 234 |
-
# if sentence_appearances[i] > 0:
|
| 235 |
-
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 236 |
-
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 237 |
-
|
| 238 |
-
# # Only apply minimal smoothing at prediction boundaries
|
| 239 |
-
# if i > 0 and i < len(sentences) - 1:
|
| 240 |
-
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 241 |
-
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 242 |
-
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 243 |
-
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 244 |
-
|
| 245 |
-
# # Check if we're at a prediction boundary
|
| 246 |
-
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 247 |
-
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 248 |
-
# next_pred = 'human' if next_human > next_ai else 'ai'
|
| 249 |
-
|
| 250 |
-
# if current_pred != prev_pred or current_pred != next_pred:
|
| 251 |
-
# # Small adjustment at boundaries
|
| 252 |
-
# smooth_factor = 0.1
|
| 253 |
-
# human_prob = (human_prob * (1 - smooth_factor) +
|
| 254 |
-
# (prev_human + next_human) * smooth_factor / 2)
|
| 255 |
-
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 256 |
-
# (prev_ai + next_ai) * smooth_factor / 2)
|
| 257 |
-
|
| 258 |
-
# sentence_predictions.append({
|
| 259 |
-
# 'sentence': sentences[i],
|
| 260 |
-
# 'human_prob': human_prob,
|
| 261 |
-
# 'ai_prob': ai_prob,
|
| 262 |
-
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
| 263 |
-
# 'confidence': max(human_prob, ai_prob)
|
| 264 |
-
# })
|
| 265 |
-
|
| 266 |
-
# return {
|
| 267 |
-
# 'sentence_predictions': sentence_predictions,
|
| 268 |
-
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 269 |
-
# 'full_text': text,
|
| 270 |
-
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 271 |
-
# }
|
| 272 |
-
|
| 273 |
def detailed_scan(self, text: str) -> Dict:
|
| 274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 275 |
# Clean up trailing whitespace
|
|
@@ -420,8 +479,14 @@ class TextClassifier:
|
|
| 420 |
'num_sentences': num_sentences
|
| 421 |
}
|
| 422 |
|
|
|
|
|
|
|
|
|
|
| 423 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 424 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
|
|
|
|
|
|
| 425 |
# Count words in the text
|
| 426 |
word_count = len(text.split())
|
| 427 |
|
|
@@ -432,31 +497,55 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 432 |
|
| 433 |
if mode == "quick":
|
| 434 |
result = classifier.quick_scan(text)
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
quick_analysis = f"""
|
| 437 |
-
PREDICTION: {
|
| 438 |
-
Confidence: {
|
| 439 |
-
Windows analyzed: {
|
| 440 |
"""
|
| 441 |
|
| 442 |
# Add note if mode was switched
|
| 443 |
if original_mode == "detailed":
|
| 444 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 445 |
|
| 446 |
-
|
| 447 |
text, # No highlighting in quick mode
|
| 448 |
"Quick scan mode - no sentence-level analysis available",
|
| 449 |
quick_analysis
|
| 450 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
else:
|
| 452 |
analysis = classifier.detailed_scan(text)
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
detailed_analysis = []
|
| 455 |
for pred in analysis['sentence_predictions']:
|
| 456 |
-
|
| 457 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
| 458 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
| 459 |
-
detailed_analysis.append(f"Confidence: {
|
| 460 |
detailed_analysis.append("-" * 50)
|
| 461 |
|
| 462 |
final_pred = analysis['overall_prediction']
|
|
@@ -466,16 +555,35 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 466 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 467 |
"""
|
| 468 |
|
| 469 |
-
|
| 470 |
analysis['highlighted_text'],
|
| 471 |
"\n".join(detailed_analysis),
|
| 472 |
overall_result
|
| 473 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
# Initialize the classifier globally
|
| 476 |
classifier = TextClassifier()
|
| 477 |
|
| 478 |
-
# Create Gradio interface
|
| 479 |
demo = gr.Interface(
|
| 480 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 481 |
inputs=[
|
|
@@ -497,7 +605,7 @@ demo = gr.Interface(
|
|
| 497 |
gr.Textbox(label="Overall Result", lines=4)
|
| 498 |
],
|
| 499 |
title="AI Text Detector",
|
| 500 |
-
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
| 501 |
api_name="predict",
|
| 502 |
flagging_mode="never"
|
| 503 |
)
|
|
|
|
| 10 |
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
from concurrent.futures import ThreadPoolExecutor
|
| 12 |
from functools import partial
|
| 13 |
+
import time
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from datetime import datetime
|
| 16 |
+
import threading
|
| 17 |
+
import random
|
| 18 |
+
from openpyxl import load_workbook
|
| 19 |
|
| 20 |
# Configure logging
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 30 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 31 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 32 |
|
| 33 |
+
class ExcelLogger:
|
| 34 |
+
def __init__(self, log_dir="logs", excel_file=None):
|
| 35 |
+
"""Initialize the Excel logger.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
log_dir: Directory to store log files
|
| 39 |
+
excel_file: Specific Excel file name (defaults to predictions_YYYY-MM.xlsx)
|
| 40 |
+
"""
|
| 41 |
+
self.log_dir = log_dir
|
| 42 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 43 |
+
|
| 44 |
+
# Use monthly Excel files by default
|
| 45 |
+
if excel_file is None:
|
| 46 |
+
current_month = datetime.now().strftime('%Y-%m')
|
| 47 |
+
excel_file = f"predictions_{current_month}.xlsx"
|
| 48 |
+
|
| 49 |
+
self.excel_path = os.path.join(log_dir, excel_file)
|
| 50 |
+
|
| 51 |
+
# Create excel file with headers if it doesn't exist
|
| 52 |
+
if not os.path.exists(self.excel_path):
|
| 53 |
+
self._create_excel_file()
|
| 54 |
+
|
| 55 |
+
# Create a lock for thread safety
|
| 56 |
+
self.file_lock = threading.Lock()
|
| 57 |
+
|
| 58 |
+
def _create_excel_file(self):
|
| 59 |
+
"""Create a new Excel file with appropriate sheets and headers."""
|
| 60 |
+
# Create DataFrame for metrics
|
| 61 |
+
metrics_df = pd.DataFrame(columns=[
|
| 62 |
+
'timestamp', 'word_count', 'mode', 'prediction',
|
| 63 |
+
'confidence', 'prediction_time_seconds', 'num_sentences'
|
| 64 |
+
])
|
| 65 |
+
|
| 66 |
+
# Create DataFrame for text storage
|
| 67 |
+
text_df = pd.DataFrame(columns=[
|
| 68 |
+
'entry_id', 'timestamp', 'text'
|
| 69 |
+
])
|
| 70 |
+
|
| 71 |
+
# Create Excel writer
|
| 72 |
+
with pd.ExcelWriter(self.excel_path, engine='openpyxl') as writer:
|
| 73 |
+
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
| 74 |
+
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
| 75 |
+
|
| 76 |
+
logger.info(f"Created new Excel log file: {self.excel_path}")
|
| 77 |
+
|
| 78 |
+
def log_prediction(self, prediction_data, store_text=True):
|
| 79 |
+
"""Log prediction data to the Excel file.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
prediction_data: Dictionary containing prediction metrics
|
| 83 |
+
store_text: Whether to store the full text
|
| 84 |
+
"""
|
| 85 |
+
# Generate a unique entry ID
|
| 86 |
+
entry_id = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_{random.randint(1000, 9999)}"
|
| 87 |
+
|
| 88 |
+
# Extract text if present
|
| 89 |
+
text = prediction_data.pop('text', None) if store_text else None
|
| 90 |
+
|
| 91 |
+
# Ensure timestamp is present
|
| 92 |
+
if 'timestamp' not in prediction_data:
|
| 93 |
+
prediction_data['timestamp'] = datetime.now().isoformat()
|
| 94 |
+
|
| 95 |
+
# Add entry_id to the metrics
|
| 96 |
+
metrics_data = prediction_data.copy()
|
| 97 |
+
metrics_data['entry_id'] = entry_id
|
| 98 |
+
|
| 99 |
+
# Start a thread to write data to Excel
|
| 100 |
+
thread = threading.Thread(
|
| 101 |
+
target=self._write_to_excel,
|
| 102 |
+
args=(metrics_data, text, entry_id, store_text)
|
| 103 |
+
)
|
| 104 |
+
thread.daemon = True
|
| 105 |
+
thread.start()
|
| 106 |
+
|
| 107 |
+
def _write_to_excel(self, metrics_data, text, entry_id, store_text):
|
| 108 |
+
"""Write data to Excel file with retry mechanism for concurrent access."""
|
| 109 |
+
max_retries = 5
|
| 110 |
+
retry_delay = 0.5
|
| 111 |
+
|
| 112 |
+
for attempt in range(max_retries):
|
| 113 |
+
try:
|
| 114 |
+
with self.file_lock:
|
| 115 |
+
# Load existing data
|
| 116 |
+
metrics_df = pd.read_excel(self.excel_path, sheet_name='Metrics')
|
| 117 |
+
|
| 118 |
+
# Append new metrics data
|
| 119 |
+
new_metrics = pd.DataFrame([metrics_data])
|
| 120 |
+
metrics_df = pd.concat([metrics_df, new_metrics], ignore_index=True)
|
| 121 |
+
|
| 122 |
+
# If text storage is requested
|
| 123 |
+
if store_text and text:
|
| 124 |
+
try:
|
| 125 |
+
text_df = pd.read_excel(self.excel_path, sheet_name='TextData')
|
| 126 |
+
|
| 127 |
+
# Append new text data
|
| 128 |
+
new_text = pd.DataFrame([{
|
| 129 |
+
'entry_id': entry_id,
|
| 130 |
+
'timestamp': metrics_data['timestamp'],
|
| 131 |
+
'text': text
|
| 132 |
+
}])
|
| 133 |
+
text_df = pd.concat([text_df, new_text], ignore_index=True)
|
| 134 |
+
except:
|
| 135 |
+
# If TextData sheet doesn't exist or can't be read
|
| 136 |
+
text_df = pd.DataFrame([{
|
| 137 |
+
'entry_id': entry_id,
|
| 138 |
+
'timestamp': metrics_data['timestamp'],
|
| 139 |
+
'text': text
|
| 140 |
+
}])
|
| 141 |
+
|
| 142 |
+
# Write back to Excel
|
| 143 |
+
with pd.ExcelWriter(self.excel_path, engine='openpyxl', mode='a',
|
| 144 |
+
if_sheet_exists='replace') as writer:
|
| 145 |
+
metrics_df.to_excel(writer, sheet_name='Metrics', index=False)
|
| 146 |
+
if store_text and text:
|
| 147 |
+
text_df.to_excel(writer, sheet_name='TextData', index=False)
|
| 148 |
+
|
| 149 |
+
# Successfully wrote to file
|
| 150 |
+
break
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
# If error occurs (likely due to concurrent access), retry after delay
|
| 154 |
+
logger.warning(f"Error writing to Excel (attempt {attempt+1}/{max_retries}): {e}")
|
| 155 |
+
time.sleep(retry_delay * (attempt + 1)) # Progressive backoff
|
| 156 |
+
else:
|
| 157 |
+
# If all retries fail, log to backup file
|
| 158 |
+
logger.error(f"Failed to write to Excel after {max_retries} attempts, logging to backup file")
|
| 159 |
+
self._write_to_backup(metrics_data, text, entry_id, store_text)
|
| 160 |
+
|
| 161 |
+
def _write_to_backup(self, metrics_data, text, entry_id, store_text):
|
| 162 |
+
"""Write to backup CSV files if Excel writing fails."""
|
| 163 |
+
timestamp = datetime.now().strftime('%Y%m%d')
|
| 164 |
+
|
| 165 |
+
# Log metrics to CSV
|
| 166 |
+
metrics_csv = os.path.join(self.log_dir, f"metrics_backup_{timestamp}.csv")
|
| 167 |
+
pd.DataFrame([metrics_data]).to_csv(metrics_csv, mode='a', header=not os.path.exists(metrics_csv), index=False)
|
| 168 |
+
|
| 169 |
+
# Log text to separate CSV if needed
|
| 170 |
+
if store_text and text:
|
| 171 |
+
text_csv = os.path.join(self.log_dir, f"text_backup_{timestamp}.csv")
|
| 172 |
+
text_data = {
|
| 173 |
+
'entry_id': entry_id,
|
| 174 |
+
'timestamp': metrics_data['timestamp'],
|
| 175 |
+
'text': text
|
| 176 |
+
}
|
| 177 |
+
pd.DataFrame([text_data]).to_csv(text_csv, mode='a', header=not os.path.exists(text_csv), index=False)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
class TextWindowProcessor:
|
| 181 |
def __init__(self):
|
| 182 |
try:
|
|
|
|
| 329 |
'num_windows': len(predictions)
|
| 330 |
}
|
| 331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
def detailed_scan(self, text: str) -> Dict:
|
| 333 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
| 334 |
# Clean up trailing whitespace
|
|
|
|
| 479 |
'num_sentences': num_sentences
|
| 480 |
}
|
| 481 |
|
| 482 |
+
# Initialize the logger
|
| 483 |
+
excel_logger = ExcelLogger(log_dir="prediction_logs")
|
| 484 |
+
|
| 485 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 486 |
"""Analyze text using specified mode and return formatted results."""
|
| 487 |
+
# Start timing the prediction
|
| 488 |
+
start_time = time.time()
|
| 489 |
+
|
| 490 |
# Count words in the text
|
| 491 |
word_count = len(text.split())
|
| 492 |
|
|
|
|
| 497 |
|
| 498 |
if mode == "quick":
|
| 499 |
result = classifier.quick_scan(text)
|
| 500 |
+
prediction = result['prediction']
|
| 501 |
+
confidence = result['confidence']
|
| 502 |
+
num_windows = result['num_windows']
|
| 503 |
|
| 504 |
quick_analysis = f"""
|
| 505 |
+
PREDICTION: {prediction.upper()}
|
| 506 |
+
Confidence: {confidence*100:.1f}%
|
| 507 |
+
Windows analyzed: {num_windows}
|
| 508 |
"""
|
| 509 |
|
| 510 |
# Add note if mode was switched
|
| 511 |
if original_mode == "detailed":
|
| 512 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 513 |
|
| 514 |
+
output = (
|
| 515 |
text, # No highlighting in quick mode
|
| 516 |
"Quick scan mode - no sentence-level analysis available",
|
| 517 |
quick_analysis
|
| 518 |
)
|
| 519 |
+
|
| 520 |
+
# End timing
|
| 521 |
+
end_time = time.time()
|
| 522 |
+
prediction_time = end_time - start_time
|
| 523 |
+
|
| 524 |
+
# Log the data
|
| 525 |
+
log_data = {
|
| 526 |
+
"timestamp": datetime.now().isoformat(),
|
| 527 |
+
"word_count": word_count,
|
| 528 |
+
"mode": mode,
|
| 529 |
+
"prediction": prediction,
|
| 530 |
+
"confidence": confidence,
|
| 531 |
+
"prediction_time_seconds": prediction_time,
|
| 532 |
+
"num_sentences": 0, # No sentence analysis in quick mode
|
| 533 |
+
"text": text
|
| 534 |
+
}
|
| 535 |
+
excel_logger.log_prediction(log_data)
|
| 536 |
+
|
| 537 |
else:
|
| 538 |
analysis = classifier.detailed_scan(text)
|
| 539 |
+
prediction = analysis['overall_prediction']['prediction']
|
| 540 |
+
confidence = analysis['overall_prediction']['confidence']
|
| 541 |
+
num_sentences = analysis['overall_prediction']['num_sentences']
|
| 542 |
|
| 543 |
detailed_analysis = []
|
| 544 |
for pred in analysis['sentence_predictions']:
|
| 545 |
+
pred_confidence = pred['confidence'] * 100
|
| 546 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
| 547 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
| 548 |
+
detailed_analysis.append(f"Confidence: {pred_confidence:.1f}%")
|
| 549 |
detailed_analysis.append("-" * 50)
|
| 550 |
|
| 551 |
final_pred = analysis['overall_prediction']
|
|
|
|
| 555 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 556 |
"""
|
| 557 |
|
| 558 |
+
output = (
|
| 559 |
analysis['highlighted_text'],
|
| 560 |
"\n".join(detailed_analysis),
|
| 561 |
overall_result
|
| 562 |
)
|
| 563 |
+
|
| 564 |
+
# End timing
|
| 565 |
+
end_time = time.time()
|
| 566 |
+
prediction_time = end_time - start_time
|
| 567 |
+
|
| 568 |
+
# Log the data
|
| 569 |
+
log_data = {
|
| 570 |
+
"timestamp": datetime.now().isoformat(),
|
| 571 |
+
"word_count": word_count,
|
| 572 |
+
"mode": mode,
|
| 573 |
+
"prediction": prediction,
|
| 574 |
+
"confidence": confidence,
|
| 575 |
+
"prediction_time_seconds": prediction_time,
|
| 576 |
+
"num_sentences": num_sentences,
|
| 577 |
+
"text": text
|
| 578 |
+
}
|
| 579 |
+
excel_logger.log_prediction(log_data)
|
| 580 |
+
|
| 581 |
+
return output
|
| 582 |
|
| 583 |
# Initialize the classifier globally
|
| 584 |
classifier = TextClassifier()
|
| 585 |
|
| 586 |
+
# Create Gradio interface with added information about data collection
|
| 587 |
demo = gr.Interface(
|
| 588 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 589 |
inputs=[
|
|
|
|
| 605 |
gr.Textbox(label="Overall Result", lines=4)
|
| 606 |
],
|
| 607 |
title="AI Text Detector",
|
| 608 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions. Note: For testing purposes, text and analysis data will be recorded.",
|
| 609 |
api_name="predict",
|
| 610 |
flagging_mode="never"
|
| 611 |
)
|