Update app.py
Browse files
app.py
CHANGED
|
@@ -13,18 +13,18 @@ from functools import partial
|
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
|
| 16 |
-
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
-
|
| 21 |
MAX_LENGTH = 512
|
| 22 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
| 23 |
WINDOW_SIZE = 6
|
| 24 |
WINDOW_OVERLAP = 2
|
| 25 |
CONFIDENCE_THRESHOLD = 0.65
|
| 26 |
-
BATCH_SIZE = 8
|
| 27 |
-
MAX_WORKERS = 4
|
| 28 |
|
| 29 |
class TextWindowProcessor:
|
| 30 |
def __init__(self):
|
|
@@ -41,7 +41,7 @@ class TextWindowProcessor:
|
|
| 41 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 42 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 43 |
|
| 44 |
-
|
| 45 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 46 |
|
| 47 |
def split_into_sentences(self, text: str) -> List[str]:
|
|
@@ -60,17 +60,16 @@ class TextWindowProcessor:
|
|
| 60 |
return windows
|
| 61 |
|
| 62 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
| 63 |
-
"""Create windows with better boundary handling"""
|
| 64 |
windows = []
|
| 65 |
window_sentence_indices = []
|
| 66 |
|
| 67 |
for i in range(len(sentences)):
|
| 68 |
-
|
| 69 |
half_window = window_size // 2
|
| 70 |
start_idx = max(0, i - half_window)
|
| 71 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 72 |
|
| 73 |
-
|
| 74 |
window = sentences[start_idx:end_idx]
|
| 75 |
windows.append(" ".join(window))
|
| 76 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
|
@@ -79,7 +78,7 @@ class TextWindowProcessor:
|
|
| 79 |
|
| 80 |
class TextClassifier:
|
| 81 |
def __init__(self):
|
| 82 |
-
|
| 83 |
if not torch.cuda.is_available():
|
| 84 |
torch.set_num_threads(MAX_WORKERS)
|
| 85 |
torch.set_num_interop_threads(MAX_WORKERS)
|
|
@@ -119,7 +118,6 @@ class TextClassifier:
|
|
| 119 |
self.model.eval()
|
| 120 |
|
| 121 |
def quick_scan(self, text: str) -> Dict:
|
| 122 |
-
"""Perform a quick scan using simple window analysis."""
|
| 123 |
if not text.strip():
|
| 124 |
return {
|
| 125 |
'prediction': 'unknown',
|
|
@@ -132,7 +130,7 @@ class TextClassifier:
|
|
| 132 |
|
| 133 |
predictions = []
|
| 134 |
|
| 135 |
-
|
| 136 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 137 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 138 |
|
|
@@ -157,7 +155,7 @@ class TextClassifier:
|
|
| 157 |
}
|
| 158 |
predictions.append(prediction)
|
| 159 |
|
| 160 |
-
|
| 161 |
del inputs, outputs, probs
|
| 162 |
if torch.cuda.is_available():
|
| 163 |
torch.cuda.empty_cache()
|
|
@@ -179,8 +177,7 @@ class TextClassifier:
|
|
| 179 |
}
|
| 180 |
|
| 181 |
def detailed_scan(self, text: str) -> Dict:
|
| 182 |
-
|
| 183 |
-
# Clean up trailing whitespace
|
| 184 |
text = text.rstrip()
|
| 185 |
|
| 186 |
if not text.strip():
|
|
@@ -199,14 +196,14 @@ class TextClassifier:
|
|
| 199 |
if not sentences:
|
| 200 |
return {}
|
| 201 |
|
| 202 |
-
|
| 203 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 204 |
|
| 205 |
-
|
| 206 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 207 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 208 |
|
| 209 |
-
|
| 210 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 211 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 212 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
|
@@ -223,45 +220,45 @@ class TextClassifier:
|
|
| 223 |
outputs = self.model(**inputs)
|
| 224 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 225 |
|
| 226 |
-
|
| 227 |
for window_idx, indices in enumerate(batch_indices):
|
| 228 |
center_idx = len(indices) // 2
|
| 229 |
-
center_weight = 0.7
|
| 230 |
-
edge_weight = 0.3 / (len(indices) - 1)
|
| 231 |
|
| 232 |
for pos, sent_idx in enumerate(indices):
|
| 233 |
-
|
| 234 |
weight = center_weight if pos == center_idx else edge_weight
|
| 235 |
sentence_appearances[sent_idx] += weight
|
| 236 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 237 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 238 |
|
| 239 |
-
|
| 240 |
del inputs, outputs, probs
|
| 241 |
if torch.cuda.is_available():
|
| 242 |
torch.cuda.empty_cache()
|
| 243 |
|
| 244 |
-
|
| 245 |
sentence_predictions = []
|
| 246 |
for i in range(len(sentences)):
|
| 247 |
if sentence_appearances[i] > 0:
|
| 248 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 249 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 250 |
|
| 251 |
-
|
| 252 |
if i > 0 and i < len(sentences) - 1:
|
| 253 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 254 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 255 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 256 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 257 |
|
| 258 |
-
|
| 259 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 260 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 261 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 262 |
|
| 263 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 264 |
-
|
| 265 |
smooth_factor = 0.1
|
| 266 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 267 |
(prev_human + next_human) * smooth_factor / 2)
|
|
@@ -284,7 +281,6 @@ class TextClassifier:
|
|
| 284 |
}
|
| 285 |
|
| 286 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
| 287 |
-
"""Format predictions as HTML with color-coding."""
|
| 288 |
html_parts = []
|
| 289 |
|
| 290 |
for pred in sentence_predictions:
|
|
@@ -293,21 +289,20 @@ class TextClassifier:
|
|
| 293 |
|
| 294 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 295 |
if pred['prediction'] == 'human':
|
| 296 |
-
color = "
|
| 297 |
else:
|
| 298 |
-
color = "
|
| 299 |
else:
|
| 300 |
if pred['prediction'] == 'human':
|
| 301 |
-
color = "
|
| 302 |
else:
|
| 303 |
-
color = "
|
| 304 |
|
| 305 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 306 |
|
| 307 |
return " ".join(html_parts)
|
| 308 |
|
| 309 |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
|
| 310 |
-
"""Aggregate predictions from multiple sentences into a single prediction."""
|
| 311 |
if not predictions:
|
| 312 |
return {
|
| 313 |
'prediction': 'unknown',
|
|
@@ -329,14 +324,13 @@ class TextClassifier:
|
|
| 329 |
}
|
| 330 |
|
| 331 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 332 |
-
|
| 333 |
-
# Start timing for normal analysis
|
| 334 |
start_time = time.time()
|
| 335 |
|
| 336 |
-
|
| 337 |
word_count = len(text.split())
|
| 338 |
|
| 339 |
-
|
| 340 |
original_mode = mode
|
| 341 |
if word_count < 200 and mode == "detailed":
|
| 342 |
mode = "quick"
|
|
@@ -350,15 +344,15 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 350 |
Windows analyzed: {result['num_windows']}
|
| 351 |
"""
|
| 352 |
|
| 353 |
-
|
| 354 |
if original_mode == "detailed":
|
| 355 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 356 |
|
| 357 |
-
|
| 358 |
execution_time = (time.time() - start_time) * 1000
|
| 359 |
|
| 360 |
return (
|
| 361 |
-
text,
|
| 362 |
"Quick scan mode - no sentence-level analysis available",
|
| 363 |
quick_analysis
|
| 364 |
)
|
|
@@ -380,7 +374,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 380 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 381 |
"""
|
| 382 |
|
| 383 |
-
|
| 384 |
execution_time = (time.time() - start_time) * 1000
|
| 385 |
|
| 386 |
return (
|
|
@@ -389,10 +383,10 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 389 |
overall_result
|
| 390 |
)
|
| 391 |
|
| 392 |
-
|
| 393 |
classifier = TextClassifier()
|
| 394 |
|
| 395 |
-
|
| 396 |
demo = gr.Interface(
|
| 397 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 398 |
inputs=[
|
|
@@ -419,19 +413,17 @@ demo = gr.Interface(
|
|
| 419 |
flagging_mode="never"
|
| 420 |
)
|
| 421 |
|
| 422 |
-
|
| 423 |
app = demo.app
|
| 424 |
|
| 425 |
-
# Add CORS middleware
|
| 426 |
app.add_middleware(
|
| 427 |
CORSMiddleware,
|
| 428 |
-
allow_origins=["*"],
|
| 429 |
allow_credentials=True,
|
| 430 |
allow_methods=["GET", "POST", "OPTIONS"],
|
| 431 |
allow_headers=["*"],
|
| 432 |
)
|
| 433 |
|
| 434 |
-
# Ensure CORS is applied before launching
|
| 435 |
if __name__ == "__main__":
|
| 436 |
demo.queue()
|
| 437 |
demo.launch(
|
|
|
|
| 13 |
import time
|
| 14 |
from datetime import datetime
|
| 15 |
|
| 16 |
+
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
+
|
| 21 |
MAX_LENGTH = 512
|
| 22 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
| 23 |
WINDOW_SIZE = 6
|
| 24 |
WINDOW_OVERLAP = 2
|
| 25 |
CONFIDENCE_THRESHOLD = 0.65
|
| 26 |
+
BATCH_SIZE = 8
|
| 27 |
+
MAX_WORKERS = 4
|
| 28 |
|
| 29 |
class TextWindowProcessor:
|
| 30 |
def __init__(self):
|
|
|
|
| 41 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
| 42 |
self.nlp.disable_pipes(*disabled_pipes)
|
| 43 |
|
| 44 |
+
|
| 45 |
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 46 |
|
| 47 |
def split_into_sentences(self, text: str) -> List[str]:
|
|
|
|
| 60 |
return windows
|
| 61 |
|
| 62 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
|
|
|
| 63 |
windows = []
|
| 64 |
window_sentence_indices = []
|
| 65 |
|
| 66 |
for i in range(len(sentences)):
|
| 67 |
+
|
| 68 |
half_window = window_size // 2
|
| 69 |
start_idx = max(0, i - half_window)
|
| 70 |
end_idx = min(len(sentences), i + half_window + 1)
|
| 71 |
|
| 72 |
+
|
| 73 |
window = sentences[start_idx:end_idx]
|
| 74 |
windows.append(" ".join(window))
|
| 75 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
|
|
|
| 78 |
|
| 79 |
class TextClassifier:
|
| 80 |
def __init__(self):
|
| 81 |
+
|
| 82 |
if not torch.cuda.is_available():
|
| 83 |
torch.set_num_threads(MAX_WORKERS)
|
| 84 |
torch.set_num_interop_threads(MAX_WORKERS)
|
|
|
|
| 118 |
self.model.eval()
|
| 119 |
|
| 120 |
def quick_scan(self, text: str) -> Dict:
|
|
|
|
| 121 |
if not text.strip():
|
| 122 |
return {
|
| 123 |
'prediction': 'unknown',
|
|
|
|
| 130 |
|
| 131 |
predictions = []
|
| 132 |
|
| 133 |
+
|
| 134 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 135 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 136 |
|
|
|
|
| 155 |
}
|
| 156 |
predictions.append(prediction)
|
| 157 |
|
| 158 |
+
|
| 159 |
del inputs, outputs, probs
|
| 160 |
if torch.cuda.is_available():
|
| 161 |
torch.cuda.empty_cache()
|
|
|
|
| 177 |
}
|
| 178 |
|
| 179 |
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
+
|
|
|
|
| 181 |
text = text.rstrip()
|
| 182 |
|
| 183 |
if not text.strip():
|
|
|
|
| 196 |
if not sentences:
|
| 197 |
return {}
|
| 198 |
|
| 199 |
+
|
| 200 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 201 |
|
| 202 |
+
|
| 203 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 204 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 205 |
|
| 206 |
+
|
| 207 |
for i in range(0, len(windows), BATCH_SIZE):
|
| 208 |
batch_windows = windows[i:i + BATCH_SIZE]
|
| 209 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
|
|
|
| 220 |
outputs = self.model(**inputs)
|
| 221 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 222 |
|
| 223 |
+
|
| 224 |
for window_idx, indices in enumerate(batch_indices):
|
| 225 |
center_idx = len(indices) // 2
|
| 226 |
+
center_weight = 0.7
|
| 227 |
+
edge_weight = 0.3 / (len(indices) - 1)
|
| 228 |
|
| 229 |
for pos, sent_idx in enumerate(indices):
|
| 230 |
+
|
| 231 |
weight = center_weight if pos == center_idx else edge_weight
|
| 232 |
sentence_appearances[sent_idx] += weight
|
| 233 |
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 234 |
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 235 |
|
| 236 |
+
|
| 237 |
del inputs, outputs, probs
|
| 238 |
if torch.cuda.is_available():
|
| 239 |
torch.cuda.empty_cache()
|
| 240 |
|
| 241 |
+
|
| 242 |
sentence_predictions = []
|
| 243 |
for i in range(len(sentences)):
|
| 244 |
if sentence_appearances[i] > 0:
|
| 245 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 246 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 247 |
|
| 248 |
+
|
| 249 |
if i > 0 and i < len(sentences) - 1:
|
| 250 |
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 251 |
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 252 |
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 253 |
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 254 |
|
| 255 |
+
|
| 256 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 257 |
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 258 |
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 259 |
|
| 260 |
if current_pred != prev_pred or current_pred != next_pred:
|
| 261 |
+
|
| 262 |
smooth_factor = 0.1
|
| 263 |
human_prob = (human_prob * (1 - smooth_factor) +
|
| 264 |
(prev_human + next_human) * smooth_factor / 2)
|
|
|
|
| 281 |
}
|
| 282 |
|
| 283 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
|
|
|
| 284 |
html_parts = []
|
| 285 |
|
| 286 |
for pred in sentence_predictions:
|
|
|
|
| 289 |
|
| 290 |
if confidence >= CONFIDENCE_THRESHOLD:
|
| 291 |
if pred['prediction'] == 'human':
|
| 292 |
+
color = "
|
| 293 |
else:
|
| 294 |
+
color = "
|
| 295 |
else:
|
| 296 |
if pred['prediction'] == 'human':
|
| 297 |
+
color = "
|
| 298 |
else:
|
| 299 |
+
color = "
|
| 300 |
|
| 301 |
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
| 302 |
|
| 303 |
return " ".join(html_parts)
|
| 304 |
|
| 305 |
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
|
|
|
|
| 306 |
if not predictions:
|
| 307 |
return {
|
| 308 |
'prediction': 'unknown',
|
|
|
|
| 324 |
}
|
| 325 |
|
| 326 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 327 |
+
|
|
|
|
| 328 |
start_time = time.time()
|
| 329 |
|
| 330 |
+
|
| 331 |
word_count = len(text.split())
|
| 332 |
|
| 333 |
+
|
| 334 |
original_mode = mode
|
| 335 |
if word_count < 200 and mode == "detailed":
|
| 336 |
mode = "quick"
|
|
|
|
| 344 |
Windows analyzed: {result['num_windows']}
|
| 345 |
"""
|
| 346 |
|
| 347 |
+
|
| 348 |
if original_mode == "detailed":
|
| 349 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
| 350 |
|
| 351 |
+
|
| 352 |
execution_time = (time.time() - start_time) * 1000
|
| 353 |
|
| 354 |
return (
|
| 355 |
+
text,
|
| 356 |
"Quick scan mode - no sentence-level analysis available",
|
| 357 |
quick_analysis
|
| 358 |
)
|
|
|
|
| 374 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
| 375 |
"""
|
| 376 |
|
| 377 |
+
|
| 378 |
execution_time = (time.time() - start_time) * 1000
|
| 379 |
|
| 380 |
return (
|
|
|
|
| 383 |
overall_result
|
| 384 |
)
|
| 385 |
|
| 386 |
+
|
| 387 |
classifier = TextClassifier()
|
| 388 |
|
| 389 |
+
|
| 390 |
demo = gr.Interface(
|
| 391 |
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 392 |
inputs=[
|
|
|
|
| 413 |
flagging_mode="never"
|
| 414 |
)
|
| 415 |
|
| 416 |
+
|
| 417 |
app = demo.app
|
| 418 |
|
|
|
|
| 419 |
app.add_middleware(
|
| 420 |
CORSMiddleware,
|
| 421 |
+
allow_origins=["*"],
|
| 422 |
allow_credentials=True,
|
| 423 |
allow_methods=["GET", "POST", "OPTIONS"],
|
| 424 |
allow_headers=["*"],
|
| 425 |
)
|
| 426 |
|
|
|
|
| 427 |
if __name__ == "__main__":
|
| 428 |
demo.queue()
|
| 429 |
demo.launch(
|