Update app.py
Browse files
app.py
CHANGED
|
@@ -176,8 +176,8 @@ class TextClassifier:
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
-
def
|
| 180 |
-
"""
|
| 181 |
if self.model is None or self.tokenizer is None:
|
| 182 |
self.load_model()
|
| 183 |
|
|
@@ -186,19 +186,21 @@ class TextClassifier:
|
|
| 186 |
if not sentences:
|
| 187 |
return {}
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
#
|
| 193 |
-
for i in range(len(sentences))
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
inputs = self.tokenizer(
|
| 201 |
-
|
| 202 |
truncation=True,
|
| 203 |
padding=True,
|
| 204 |
max_length=MAX_LENGTH,
|
|
@@ -208,11 +210,51 @@ class TextClassifier:
|
|
| 208 |
with torch.no_grad():
|
| 209 |
outputs = self.model(**inputs)
|
| 210 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 211 |
-
|
| 212 |
-
#
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
sentence_predictions.append({
|
| 217 |
'sentence': sentences[i],
|
| 218 |
'human_prob': human_prob,
|
|
@@ -221,55 +263,11 @@ class TextClassifier:
|
|
| 221 |
'confidence': max(human_prob, ai_prob)
|
| 222 |
})
|
| 223 |
|
| 224 |
-
del inputs, outputs, probs
|
| 225 |
-
if torch.cuda.is_available():
|
| 226 |
-
torch.cuda.empty_cache()
|
| 227 |
-
|
| 228 |
-
# Second pass: Minimal smoothing only at significant prediction boundaries
|
| 229 |
-
smoothed_predictions = []
|
| 230 |
-
for i in range(len(sentence_predictions)):
|
| 231 |
-
pred = sentence_predictions[i].copy()
|
| 232 |
-
|
| 233 |
-
# Only apply smoothing if this sentence is at a prediction boundary
|
| 234 |
-
if i > 0 and i < len(sentence_predictions) - 1:
|
| 235 |
-
prev_pred = sentence_predictions[i-1]
|
| 236 |
-
next_pred = sentence_predictions[i+1]
|
| 237 |
-
|
| 238 |
-
# Check if we're at a prediction boundary
|
| 239 |
-
at_boundary = (
|
| 240 |
-
pred['prediction'] != prev_pred['prediction'] or
|
| 241 |
-
pred['prediction'] != next_pred['prediction']
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
if at_boundary:
|
| 245 |
-
# Calculate average confidence of neighbors
|
| 246 |
-
neighbor_conf = (prev_pred['confidence'] + next_pred['confidence']) / 2
|
| 247 |
-
|
| 248 |
-
# If neighbors are very confident and different from current prediction,
|
| 249 |
-
# slightly adjust current prediction
|
| 250 |
-
if neighbor_conf > 0.85 and pred['confidence'] < 0.75:
|
| 251 |
-
# Adjust probabilities slightly toward neighbors
|
| 252 |
-
weight = 0.15 # Small adjustment weight
|
| 253 |
-
pred['human_prob'] = (
|
| 254 |
-
pred['human_prob'] * (1 - weight) +
|
| 255 |
-
((prev_pred['human_prob'] + next_pred['human_prob']) / 2) * weight
|
| 256 |
-
)
|
| 257 |
-
pred['ai_prob'] = (
|
| 258 |
-
pred['ai_prob'] * (1 - weight) +
|
| 259 |
-
((prev_pred['ai_prob'] + next_pred['ai_prob']) / 2) * weight
|
| 260 |
-
)
|
| 261 |
-
|
| 262 |
-
# Update prediction and confidence
|
| 263 |
-
pred['prediction'] = 'human' if pred['human_prob'] > pred['ai_prob'] else 'ai'
|
| 264 |
-
pred['confidence'] = max(pred['human_prob'], pred['ai_prob'])
|
| 265 |
-
|
| 266 |
-
smoothed_predictions.append(pred)
|
| 267 |
-
|
| 268 |
return {
|
| 269 |
-
'sentence_predictions':
|
| 270 |
-
'highlighted_text': self.format_predictions_html(
|
| 271 |
'full_text': text,
|
| 272 |
-
'overall_prediction': self.aggregate_predictions(
|
| 273 |
}
|
| 274 |
|
| 275 |
def detailed_scan(self, text: str) -> Dict:
|
|
@@ -436,7 +434,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 436 |
quick_analysis
|
| 437 |
)
|
| 438 |
else:
|
| 439 |
-
|
| 440 |
|
| 441 |
detailed_analysis = []
|
| 442 |
for pred in analysis['sentence_predictions']:
|
|
|
|
| 176 |
'num_windows': len(predictions)
|
| 177 |
}
|
| 178 |
|
| 179 |
+
def detailed_scan(self, text: str) -> Dict:
|
| 180 |
+
"""Original prediction method with modified window handling"""
|
| 181 |
if self.model is None or self.tokenizer is None:
|
| 182 |
self.load_model()
|
| 183 |
|
|
|
|
| 186 |
if not sentences:
|
| 187 |
return {}
|
| 188 |
|
| 189 |
+
# Create centered windows for each sentence
|
| 190 |
+
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
| 191 |
+
|
| 192 |
+
# Track scores for each sentence
|
| 193 |
+
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
| 194 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
| 195 |
+
|
| 196 |
+
# Process windows in batches
|
| 197 |
+
batch_size = 16
|
| 198 |
+
for i in range(0, len(windows), batch_size):
|
| 199 |
+
batch_windows = windows[i:i + batch_size]
|
| 200 |
+
batch_indices = window_sentence_indices[i:i + batch_size]
|
| 201 |
+
|
| 202 |
inputs = self.tokenizer(
|
| 203 |
+
batch_windows,
|
| 204 |
truncation=True,
|
| 205 |
padding=True,
|
| 206 |
max_length=MAX_LENGTH,
|
|
|
|
| 210 |
with torch.no_grad():
|
| 211 |
outputs = self.model(**inputs)
|
| 212 |
probs = F.softmax(outputs.logits, dim=-1)
|
| 213 |
+
|
| 214 |
+
# Attribute predictions more carefully
|
| 215 |
+
for window_idx, indices in enumerate(batch_indices):
|
| 216 |
+
center_idx = len(indices) // 2
|
| 217 |
+
center_weight = 0.7 # Higher weight for center sentence
|
| 218 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 219 |
+
|
| 220 |
+
for pos, sent_idx in enumerate(indices):
|
| 221 |
+
# Apply higher weight to center sentence
|
| 222 |
+
weight = center_weight if pos == center_idx else edge_weight
|
| 223 |
+
sentence_appearances[sent_idx] += weight
|
| 224 |
+
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
| 225 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
| 226 |
+
|
| 227 |
+
del inputs, outputs, probs
|
| 228 |
+
if torch.cuda.is_available():
|
| 229 |
+
torch.cuda.empty_cache()
|
| 230 |
+
|
| 231 |
+
# Calculate final predictions
|
| 232 |
+
sentence_predictions = []
|
| 233 |
+
for i in range(len(sentences)):
|
| 234 |
+
if sentence_appearances[i] > 0:
|
| 235 |
+
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
| 236 |
+
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
| 237 |
+
|
| 238 |
+
# Only apply minimal smoothing at prediction boundaries
|
| 239 |
+
if i > 0 and i < len(sentences) - 1:
|
| 240 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 241 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 242 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 243 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 244 |
+
|
| 245 |
+
# Check if we're at a prediction boundary
|
| 246 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
| 247 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
| 248 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
| 249 |
+
|
| 250 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
| 251 |
+
# Small adjustment at boundaries
|
| 252 |
+
smooth_factor = 0.1
|
| 253 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
| 254 |
+
(prev_human + next_human) * smooth_factor / 2)
|
| 255 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
| 256 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
| 257 |
+
|
| 258 |
sentence_predictions.append({
|
| 259 |
'sentence': sentences[i],
|
| 260 |
'human_prob': human_prob,
|
|
|
|
| 263 |
'confidence': max(human_prob, ai_prob)
|
| 264 |
})
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
return {
|
| 267 |
+
'sentence_predictions': sentence_predictions,
|
| 268 |
+
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
| 269 |
'full_text': text,
|
| 270 |
+
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
| 271 |
}
|
| 272 |
|
| 273 |
def detailed_scan(self, text: str) -> Dict:
|
|
|
|
| 434 |
quick_analysis
|
| 435 |
)
|
| 436 |
else:
|
| 437 |
+
analysis = classifier.predict_with_local_context(text)
|
| 438 |
|
| 439 |
detailed_analysis = []
|
| 440 |
for pred in analysis['sentence_predictions']:
|