Update app.py
Browse files
app.py
CHANGED
|
@@ -18,10 +18,6 @@ from openpyxl.utils import get_column_letter
|
|
| 18 |
from io import BytesIO
|
| 19 |
import base64
|
| 20 |
import hashlib
|
| 21 |
-
import requests
|
| 22 |
-
import tempfile
|
| 23 |
-
from pathlib import Path
|
| 24 |
-
import mimetypes
|
| 25 |
|
| 26 |
# Configure logging
|
| 27 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -36,17 +32,6 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
| 36 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 37 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 38 |
|
| 39 |
-
# IMPORTANT: Set PyTorch thread configuration at the module level
|
| 40 |
-
# before any parallel work starts
|
| 41 |
-
if not torch.cuda.is_available():
|
| 42 |
-
# Set thread configuration only once at the beginning
|
| 43 |
-
torch.set_num_threads(MAX_WORKERS)
|
| 44 |
-
try:
|
| 45 |
-
# Only set interop threads if it hasn't been set already
|
| 46 |
-
torch.set_num_interop_threads(MAX_WORKERS)
|
| 47 |
-
except RuntimeError as e:
|
| 48 |
-
logger.warning(f"Could not set interop threads: {str(e)}")
|
| 49 |
-
|
| 50 |
# Get password hash from environment variable (more secure)
|
| 51 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
| 52 |
|
|
@@ -56,138 +41,10 @@ if not ADMIN_PASSWORD_HASH:
|
|
| 56 |
# Excel file path for logs
|
| 57 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
| 58 |
|
| 59 |
-
# OCR API settings
|
| 60 |
-
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
| 61 |
-
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
| 62 |
-
OCR_MAX_PDF_PAGES = 3
|
| 63 |
-
OCR_MAX_FILE_SIZE_MB = 1
|
| 64 |
-
|
| 65 |
-
# Configure logging for OCR module
|
| 66 |
-
ocr_logger = logging.getLogger("ocr_module")
|
| 67 |
-
ocr_logger.setLevel(logging.INFO)
|
| 68 |
-
|
| 69 |
-
class OCRProcessor:
|
| 70 |
-
"""
|
| 71 |
-
Handles OCR processing of image and document files using OCR.space API
|
| 72 |
-
"""
|
| 73 |
-
def __init__(self, api_key: str = OCR_API_KEY):
|
| 74 |
-
self.api_key = api_key
|
| 75 |
-
self.endpoint = OCR_API_ENDPOINT
|
| 76 |
-
|
| 77 |
-
def process_file(self, file_path: str) -> Dict:
|
| 78 |
-
"""
|
| 79 |
-
Process a file using OCR.space API
|
| 80 |
-
"""
|
| 81 |
-
start_time = time.time()
|
| 82 |
-
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
| 83 |
-
|
| 84 |
-
# Validate file size
|
| 85 |
-
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
|
| 86 |
-
if file_size_mb > OCR_MAX_FILE_SIZE_MB:
|
| 87 |
-
ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
|
| 88 |
-
return {
|
| 89 |
-
"success": False,
|
| 90 |
-
"error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
|
| 91 |
-
"text": ""
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
-
# Determine file type and handle accordingly
|
| 95 |
-
file_type = self._get_file_type(file_path)
|
| 96 |
-
ocr_logger.info(f"Detected file type: {file_type}")
|
| 97 |
-
|
| 98 |
-
# Prepare the API request
|
| 99 |
-
with open(file_path, 'rb') as f:
|
| 100 |
-
file_data = f.read()
|
| 101 |
-
|
| 102 |
-
# Set up API parameters
|
| 103 |
-
payload = {
|
| 104 |
-
'isOverlayRequired': 'false',
|
| 105 |
-
'language': 'eng',
|
| 106 |
-
'OCREngine': '2', # Use more accurate engine
|
| 107 |
-
'scale': 'true',
|
| 108 |
-
'detectOrientation': 'true',
|
| 109 |
-
}
|
| 110 |
-
|
| 111 |
-
# For PDF files, check page count limitations
|
| 112 |
-
if file_type == 'application/pdf':
|
| 113 |
-
ocr_logger.info("PDF document detected, enforcing page limit")
|
| 114 |
-
payload['filetype'] = 'PDF'
|
| 115 |
-
|
| 116 |
-
# Prepare file for OCR API
|
| 117 |
-
files = {
|
| 118 |
-
'file': (os.path.basename(file_path), file_data, file_type)
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
headers = {
|
| 122 |
-
'apikey': self.api_key,
|
| 123 |
-
}
|
| 124 |
-
|
| 125 |
-
# Make the OCR API request
|
| 126 |
-
try:
|
| 127 |
-
ocr_logger.info("Sending request to OCR.space API")
|
| 128 |
-
response = requests.post(
|
| 129 |
-
self.endpoint,
|
| 130 |
-
files=files,
|
| 131 |
-
data=payload,
|
| 132 |
-
headers=headers
|
| 133 |
-
)
|
| 134 |
-
response.raise_for_status()
|
| 135 |
-
result = response.json()
|
| 136 |
-
|
| 137 |
-
# Process the OCR results
|
| 138 |
-
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
| 139 |
-
extracted_text = self._extract_text_from_result(result)
|
| 140 |
-
processing_time = time.time() - start_time
|
| 141 |
-
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
| 142 |
-
|
| 143 |
-
return {
|
| 144 |
-
"success": True,
|
| 145 |
-
"text": extracted_text,
|
| 146 |
-
"word_count": len(extracted_text.split()),
|
| 147 |
-
"processing_time_ms": int(processing_time * 1000)
|
| 148 |
-
}
|
| 149 |
-
else:
|
| 150 |
-
ocr_logger.error(f"OCR API error: {result.get('ErrorMessage', 'Unknown error')}")
|
| 151 |
-
return {
|
| 152 |
-
"success": False,
|
| 153 |
-
"error": result.get('ErrorMessage', 'OCR processing failed'),
|
| 154 |
-
"text": ""
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
except requests.exceptions.RequestException as e:
|
| 158 |
-
ocr_logger.error(f"OCR API request failed: {str(e)}")
|
| 159 |
-
return {
|
| 160 |
-
"success": False,
|
| 161 |
-
"error": f"OCR API request failed: {str(e)}",
|
| 162 |
-
"text": ""
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
def _extract_text_from_result(self, result: Dict) -> str:
|
| 166 |
-
"""
|
| 167 |
-
Extract all text from the OCR API result
|
| 168 |
-
"""
|
| 169 |
-
extracted_text = ""
|
| 170 |
-
|
| 171 |
-
if 'ParsedResults' in result and result['ParsedResults']:
|
| 172 |
-
for parsed_result in result['ParsedResults']:
|
| 173 |
-
if parsed_result.get('ParsedText'):
|
| 174 |
-
extracted_text += parsed_result['ParsedText']
|
| 175 |
-
|
| 176 |
-
return extracted_text
|
| 177 |
-
|
| 178 |
-
def _get_file_type(self, file_path: str) -> str:
|
| 179 |
-
"""
|
| 180 |
-
Determine MIME type of a file
|
| 181 |
-
"""
|
| 182 |
-
mime_type, _ = mimetypes.guess_type(file_path)
|
| 183 |
-
if mime_type is None:
|
| 184 |
-
# Default to binary if MIME type can't be determined
|
| 185 |
-
return 'application/octet-stream'
|
| 186 |
-
return mime_type
|
| 187 |
-
|
| 188 |
def is_admin_password(input_text: str) -> bool:
|
| 189 |
"""
|
| 190 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
|
| 191 |
"""
|
| 192 |
# Hash the input text
|
| 193 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
@@ -248,6 +105,11 @@ class TextWindowProcessor:
|
|
| 248 |
|
| 249 |
class TextClassifier:
|
| 250 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 252 |
self.model_name = MODEL_NAME
|
| 253 |
self.tokenizer = None
|
|
@@ -282,7 +144,6 @@ class TextClassifier:
|
|
| 282 |
|
| 283 |
self.model.eval()
|
| 284 |
|
| 285 |
-
# [Other TextClassifier methods remain the same as in paste.txt]
|
| 286 |
def quick_scan(self, text: str) -> Dict:
|
| 287 |
"""Perform a quick scan using simple window analysis."""
|
| 288 |
if not text.strip():
|
|
@@ -392,7 +253,7 @@ class TextClassifier:
|
|
| 392 |
for window_idx, indices in enumerate(batch_indices):
|
| 393 |
center_idx = len(indices) // 2
|
| 394 |
center_weight = 0.7 # Higher weight for center sentence
|
| 395 |
-
edge_weight = 0.3 / (len(indices) - 1)
|
| 396 |
|
| 397 |
for pos, sent_idx in enumerate(indices):
|
| 398 |
# Apply higher weight to center sentence
|
|
@@ -415,10 +276,10 @@ class TextClassifier:
|
|
| 415 |
|
| 416 |
# Apply minimal smoothing at prediction boundaries
|
| 417 |
if i > 0 and i < len(sentences) - 1:
|
| 418 |
-
prev_human = sentence_scores[i-1]['human_prob'] /
|
| 419 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] /
|
| 420 |
-
next_human = sentence_scores[i+1]['human_prob'] /
|
| 421 |
-
next_ai = sentence_scores[i+1]['ai_prob'] /
|
| 422 |
|
| 423 |
# Check if we're at a prediction boundary
|
| 424 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
@@ -493,72 +354,6 @@ class TextClassifier:
|
|
| 493 |
'num_sentences': num_sentences
|
| 494 |
}
|
| 495 |
|
| 496 |
-
# Function to handle file upload, OCR processing, and text analysis
|
| 497 |
-
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
| 498 |
-
"""
|
| 499 |
-
Handle file upload, OCR processing, and text analysis
|
| 500 |
-
"""
|
| 501 |
-
if file_obj is None:
|
| 502 |
-
return (
|
| 503 |
-
"No file uploaded",
|
| 504 |
-
"Please upload a file to analyze",
|
| 505 |
-
"No file uploaded for analysis"
|
| 506 |
-
)
|
| 507 |
-
|
| 508 |
-
# Create a temporary file with an appropriate extension based on content
|
| 509 |
-
content_start = file_obj[:20] # Look at the first few bytes
|
| 510 |
-
|
| 511 |
-
# Default to .bin extension
|
| 512 |
-
file_ext = ".bin"
|
| 513 |
-
|
| 514 |
-
# Try to detect PDF files
|
| 515 |
-
if content_start.startswith(b'%PDF'):
|
| 516 |
-
file_ext = ".pdf"
|
| 517 |
-
# For images, detect by common magic numbers
|
| 518 |
-
elif content_start.startswith(b'\xff\xd8'): # JPEG
|
| 519 |
-
file_ext = ".jpg"
|
| 520 |
-
elif content_start.startswith(b'\x89PNG'): # PNG
|
| 521 |
-
file_ext = ".png"
|
| 522 |
-
elif content_start.startswith(b'GIF'): # GIF
|
| 523 |
-
file_ext = ".gif"
|
| 524 |
-
|
| 525 |
-
# Create a temporary file with the detected extension
|
| 526 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
| 527 |
-
temp_file_path = temp_file.name
|
| 528 |
-
# Write uploaded file data to the temporary file
|
| 529 |
-
temp_file.write(file_obj)
|
| 530 |
-
|
| 531 |
-
try:
|
| 532 |
-
# Process the file with OCR
|
| 533 |
-
ocr_processor = OCRProcessor()
|
| 534 |
-
ocr_result = ocr_processor.process_file(temp_file_path)
|
| 535 |
-
|
| 536 |
-
if not ocr_result["success"]:
|
| 537 |
-
return (
|
| 538 |
-
"OCR Processing Error",
|
| 539 |
-
ocr_result["error"],
|
| 540 |
-
"Failed to extract text from the uploaded file"
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
# Get the extracted text
|
| 544 |
-
extracted_text = ocr_result["text"]
|
| 545 |
-
|
| 546 |
-
# If no text was extracted
|
| 547 |
-
if not extracted_text.strip():
|
| 548 |
-
return (
|
| 549 |
-
"No text extracted",
|
| 550 |
-
"The OCR process did not extract any text from the uploaded file.",
|
| 551 |
-
"No text was found in the uploaded file"
|
| 552 |
-
)
|
| 553 |
-
|
| 554 |
-
# Call the original text analysis function with the extracted text
|
| 555 |
-
return analyze_text(extracted_text, mode, classifier)
|
| 556 |
-
|
| 557 |
-
finally:
|
| 558 |
-
# Clean up the temporary file
|
| 559 |
-
if os.path.exists(temp_file_path):
|
| 560 |
-
os.remove(temp_file_path)
|
| 561 |
-
|
| 562 |
def initialize_excel_log():
|
| 563 |
"""Initialize the Excel log file if it doesn't exist."""
|
| 564 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
@@ -586,7 +381,6 @@ def initialize_excel_log():
|
|
| 586 |
wb.save(EXCEL_LOG_PATH)
|
| 587 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
| 588 |
|
| 589 |
-
|
| 590 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
| 591 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
| 592 |
# Initialize the Excel file if it doesn't exist
|
|
@@ -629,7 +423,6 @@ def log_prediction_data(input_text, word_count, prediction, confidence, executio
|
|
| 629 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
| 630 |
return False
|
| 631 |
|
| 632 |
-
|
| 633 |
def get_logs_as_base64():
|
| 634 |
"""Read the Excel logs file and return as base64 for downloading."""
|
| 635 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
@@ -648,7 +441,6 @@ def get_logs_as_base64():
|
|
| 648 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
| 649 |
return None
|
| 650 |
|
| 651 |
-
|
| 652 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 653 |
"""Analyze text using specified mode and return formatted results."""
|
| 654 |
# Check if the input text matches the admin password using secure comparison
|
|
@@ -771,146 +563,47 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
| 771 |
# Initialize the classifier globally
|
| 772 |
classifier = TextClassifier()
|
| 773 |
|
| 774 |
-
# Create Gradio interface
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
# Create a custom CSS class
|
| 790 |
-
css = """
|
| 791 |
-
#analyze-btn {
|
| 792 |
-
background-color: #FF8C00 !important;
|
| 793 |
-
border-color: #FF8C00 !important;
|
| 794 |
-
color: white !important;
|
| 795 |
-
}
|
| 796 |
-
|
| 797 |
-
.radio-with-icon {
|
| 798 |
-
display: flex;
|
| 799 |
-
align-items: center;
|
| 800 |
-
}
|
| 801 |
-
|
| 802 |
-
.paperclip-icon {
|
| 803 |
-
display: inline-block;
|
| 804 |
-
margin-left: 10px;
|
| 805 |
-
font-size: 20px;
|
| 806 |
-
cursor: pointer;
|
| 807 |
-
opacity: 0.7;
|
| 808 |
-
}
|
| 809 |
-
|
| 810 |
-
.paperclip-icon:hover {
|
| 811 |
-
opacity: 1;
|
| 812 |
-
}
|
| 813 |
-
"""
|
| 814 |
-
|
| 815 |
-
# Create the interface with custom CSS
|
| 816 |
-
with gr.Blocks(title="AI Text Detector", css=css) as demo:
|
| 817 |
-
gr.Markdown("# AI Text Detector")
|
| 818 |
-
|
| 819 |
-
with gr.Row():
|
| 820 |
-
# Left column - Input
|
| 821 |
-
with gr.Column():
|
| 822 |
-
text_input = gr.Textbox(
|
| 823 |
-
lines=8,
|
| 824 |
-
placeholder="Enter text to analyze...",
|
| 825 |
-
label="Input Text"
|
| 826 |
-
)
|
| 827 |
-
|
| 828 |
-
gr.Markdown("Analysis Mode")
|
| 829 |
-
gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.")
|
| 830 |
-
|
| 831 |
-
# Create a visible radio button row
|
| 832 |
-
with gr.Row(elem_classes=["radio-with-icon"]):
|
| 833 |
-
mode_selection = gr.Radio(
|
| 834 |
-
choices=["quick", "detailed"],
|
| 835 |
-
value="quick",
|
| 836 |
-
label=""
|
| 837 |
-
)
|
| 838 |
-
|
| 839 |
-
# Create a button that looks like a paperclip and triggers file upload
|
| 840 |
-
upload_trigger = gr.Button("📎", elem_classes=["paperclip-icon"])
|
| 841 |
-
|
| 842 |
-
# Hidden file upload that will be triggered by the paperclip button
|
| 843 |
-
file_upload = gr.File(
|
| 844 |
-
file_types=["image", "pdf", "doc", "docx"],
|
| 845 |
-
type="binary",
|
| 846 |
-
visible=False
|
| 847 |
-
)
|
| 848 |
-
|
| 849 |
-
# Action buttons
|
| 850 |
-
with gr.Row():
|
| 851 |
-
clear_btn = gr.Button("Clear")
|
| 852 |
-
analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
|
| 853 |
-
|
| 854 |
-
# Right column - Results
|
| 855 |
-
with gr.Column():
|
| 856 |
-
output_html = gr.HTML(label="Highlighted Analysis")
|
| 857 |
-
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
| 858 |
-
output_result = gr.Textbox(label="Overall Result", lines=4)
|
| 859 |
-
|
| 860 |
-
# Connect the components
|
| 861 |
-
analyze_btn.click(
|
| 862 |
-
analyze_text_wrapper,
|
| 863 |
-
inputs=[text_input, mode_selection],
|
| 864 |
-
outputs=[output_html, output_sentences, output_result]
|
| 865 |
)
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
# Setup the app with CORS middleware
|
| 892 |
-
def setup_app():
|
| 893 |
-
demo = setup_interface()
|
| 894 |
-
|
| 895 |
-
# Get the FastAPI app from Gradio
|
| 896 |
-
app = demo.app
|
| 897 |
-
|
| 898 |
-
# Add CORS middleware
|
| 899 |
-
app.add_middleware(
|
| 900 |
-
CORSMiddleware,
|
| 901 |
-
allow_origins=["*"], # For development
|
| 902 |
-
allow_credentials=True,
|
| 903 |
-
allow_methods=["GET", "POST", "OPTIONS"],
|
| 904 |
-
allow_headers=["*"],
|
| 905 |
-
)
|
| 906 |
-
|
| 907 |
-
return demo
|
| 908 |
-
|
| 909 |
-
# Initialize the application
|
| 910 |
if __name__ == "__main__":
|
| 911 |
-
demo = setup_app()
|
| 912 |
-
|
| 913 |
-
# Start the server
|
| 914 |
demo.queue()
|
| 915 |
demo.launch(
|
| 916 |
server_name="0.0.0.0",
|
|
|
|
| 18 |
from io import BytesIO
|
| 19 |
import base64
|
| 20 |
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Configure logging
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 32 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
| 33 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Get password hash from environment variable (more secure)
|
| 36 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
| 37 |
|
|
|
|
| 41 |
# Excel file path for logs
|
| 42 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def is_admin_password(input_text: str) -> bool:
|
| 45 |
"""
|
| 46 |
Check if the input text matches the admin password using secure hash comparison.
|
| 47 |
+
This prevents the password from being visible in the source code.
|
| 48 |
"""
|
| 49 |
# Hash the input text
|
| 50 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
|
|
| 105 |
|
| 106 |
class TextClassifier:
|
| 107 |
def __init__(self):
|
| 108 |
+
# Set thread configuration before any model loading or parallel work
|
| 109 |
+
if not torch.cuda.is_available():
|
| 110 |
+
torch.set_num_threads(MAX_WORKERS)
|
| 111 |
+
torch.set_num_interop_threads(MAX_WORKERS)
|
| 112 |
+
|
| 113 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 114 |
self.model_name = MODEL_NAME
|
| 115 |
self.tokenizer = None
|
|
|
|
| 144 |
|
| 145 |
self.model.eval()
|
| 146 |
|
|
|
|
| 147 |
def quick_scan(self, text: str) -> Dict:
|
| 148 |
"""Perform a quick scan using simple window analysis."""
|
| 149 |
if not text.strip():
|
|
|
|
| 253 |
for window_idx, indices in enumerate(batch_indices):
|
| 254 |
center_idx = len(indices) // 2
|
| 255 |
center_weight = 0.7 # Higher weight for center sentence
|
| 256 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
| 257 |
|
| 258 |
for pos, sent_idx in enumerate(indices):
|
| 259 |
# Apply higher weight to center sentence
|
|
|
|
| 276 |
|
| 277 |
# Apply minimal smoothing at prediction boundaries
|
| 278 |
if i > 0 and i < len(sentences) - 1:
|
| 279 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
| 280 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
| 281 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
| 282 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
| 283 |
|
| 284 |
# Check if we're at a prediction boundary
|
| 285 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
|
|
| 354 |
'num_sentences': num_sentences
|
| 355 |
}
|
| 356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
def initialize_excel_log():
|
| 358 |
"""Initialize the Excel log file if it doesn't exist."""
|
| 359 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
|
| 381 |
wb.save(EXCEL_LOG_PATH)
|
| 382 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
| 383 |
|
|
|
|
| 384 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
| 385 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
| 386 |
# Initialize the Excel file if it doesn't exist
|
|
|
|
| 423 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
| 424 |
return False
|
| 425 |
|
|
|
|
| 426 |
def get_logs_as_base64():
|
| 427 |
"""Read the Excel logs file and return as base64 for downloading."""
|
| 428 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
|
| 441 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
| 442 |
return None
|
| 443 |
|
|
|
|
| 444 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
| 445 |
"""Analyze text using specified mode and return formatted results."""
|
| 446 |
# Check if the input text matches the admin password using secure comparison
|
|
|
|
| 563 |
# Initialize the classifier globally
|
| 564 |
classifier = TextClassifier()
|
| 565 |
|
| 566 |
+
# Create Gradio interface
|
| 567 |
+
demo = gr.Interface(
|
| 568 |
+
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
| 569 |
+
inputs=[
|
| 570 |
+
gr.Textbox(
|
| 571 |
+
lines=8,
|
| 572 |
+
placeholder="Enter text to analyze...",
|
| 573 |
+
label="Input Text"
|
| 574 |
+
),
|
| 575 |
+
gr.Radio(
|
| 576 |
+
choices=["quick", "detailed"],
|
| 577 |
+
value="quick",
|
| 578 |
+
label="Analysis Mode",
|
| 579 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
)
|
| 581 |
+
],
|
| 582 |
+
outputs=[
|
| 583 |
+
gr.HTML(label="Highlighted Analysis"),
|
| 584 |
+
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
|
| 585 |
+
gr.Textbox(label="Overall Result", lines=4)
|
| 586 |
+
],
|
| 587 |
+
title="AI Text Detector",
|
| 588 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
| 589 |
+
api_name="predict",
|
| 590 |
+
flagging_mode="never"
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
# Get the FastAPI app from Gradio
|
| 594 |
+
app = demo.app
|
| 595 |
+
|
| 596 |
+
# Add CORS middleware
|
| 597 |
+
app.add_middleware(
|
| 598 |
+
CORSMiddleware,
|
| 599 |
+
allow_origins=["*"], # For development
|
| 600 |
+
allow_credentials=True,
|
| 601 |
+
allow_methods=["GET", "POST", "OPTIONS"],
|
| 602 |
+
allow_headers=["*"],
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
# Ensure CORS is applied before launching
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 607 |
demo.queue()
|
| 608 |
demo.launch(
|
| 609 |
server_name="0.0.0.0",
|