Spaces:
Running
Running
Add Gradio demo application for GigaAM-v3 speech recognition models
Browse files- Implemented main application logic in app.py for audio transcription using various model variants.
- Updated README.md to reflect the new demo features and usage instructions.
- Added requirements.txt for necessary dependencies.
- Included runtime.txt specifying Python version.
- README.md +43 -3
- app.py +254 -0
- requirements.txt +14 -0
- runtime.txt +2 -0
README.md
CHANGED
|
@@ -4,11 +4,51 @@ emoji: 🔥
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description:
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: Interactive Gradio Space demonstrating ai-sage/GigaAM-v3 ASR
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# GigaAM-v3 Gradio demo
|
| 15 |
+
|
| 16 |
+
This Space demonstrates the [`ai-sage/GigaAM-v3`](https://huggingface.co/ai-sage/GigaAM-v3) Russian ASR models built on top of a Conformer encoder and HuBERT-CTC objective. The demo lets you:
|
| 17 |
+
|
| 18 |
+
- upload or record audio (WAV/MP3/FLAC) directly in the browser,
|
| 19 |
+
- choose between the `ctc`, `rnnt`, `e2e_ctc`, and `e2e_rnnt` checkpoints,
|
| 20 |
+
- switch between a fast single-pass mode and a segmented long-form mode that returns timestamps.
|
| 21 |
+
|
| 22 |
+
The end-to-end variants (`e2e_*`) produce punctuated, normalized text, while the classic CTC/RNN-T checkpoints return raw transcriptions with lower latency. Long-form mode uses `model.transcribe_longform` and requires a Hugging Face token with access to [`pyannote/segmentation-3.0`](https://huggingface.co/pyannote/segmentation-3.0).
|
| 23 |
+
|
| 24 |
+
## Requirements
|
| 25 |
+
|
| 26 |
+
- Python 3.10
|
| 27 |
+
- PyTorch / torchaudio 2.8.0
|
| 28 |
+
- `transformers==4.57.1`
|
| 29 |
+
- `gradio==4.44.0` (see `requirements.txt` for the full list)
|
| 30 |
+
- Optional: set `HF_TOKEN` (or `HUGGINGFACEHUB_API_TOKEN`) if you want to use the segmented mode or access private weights.
|
| 31 |
+
|
| 32 |
+
## Running locally
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
python -m venv .venv
|
| 36 |
+
source .venv/bin/activate # or .venv\Scripts\activate on Windows
|
| 37 |
+
pip install -r requirements.txt
|
| 38 |
+
|
| 39 |
+
# optional – needed for long-form segmentation
|
| 40 |
+
export HF_TOKEN=<your_hf_token>
|
| 41 |
+
|
| 42 |
+
python app.py
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
Open the printed URL (default `http://127.0.0.1:7860`) and start transcribing.
|
| 46 |
+
|
| 47 |
+
## Deploying to Hugging Face Spaces
|
| 48 |
+
|
| 49 |
+
- Keep the YAML front matter above so Spaces can infer the runtime.
|
| 50 |
+
- Upload `app.py`, `requirements.txt`, and `runtime.txt`.
|
| 51 |
+
- Configure an `HF_TOKEN` secret in **Settings → Variables** if you want segmented mode to work for everyone.
|
| 52 |
+
- Assign `CPU Upgrade` or GPU hardware for heavy, long-form workloads.
|
| 53 |
+
|
| 54 |
+
For more options (custom hardware, scaling, telemetry), review the [Spaces configuration reference](https://huggingface.co/docs/hub/spaces-config-reference).
|
app.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio demo application for the GigaAM-v3 speech recognition models.
|
| 3 |
+
"""
|
| 4 |
+
from __future__ import annotations
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import threading
|
| 8 |
+
import time
|
| 9 |
+
from typing import Dict, List, Optional
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import AutoModel
|
| 15 |
+
|
| 16 |
+
REPO_ID = "ai-sage/GigaAM-v3"
|
| 17 |
+
|
| 18 |
+
MODEL_VARIANTS: Dict[str, str] = {
|
| 19 |
+
"e2e_rnnt": "End-to-end RNN-T • punctuation + normalization (best quality)",
|
| 20 |
+
"e2e_ctc": "End-to-end CTC • punctuation + normalization (faster)",
|
| 21 |
+
"rnnt": "RNN-T decoder • raw text without normalization",
|
| 22 |
+
"ctc": "CTC decoder • fastest baseline",
|
| 23 |
+
}
|
| 24 |
+
DEFAULT_VARIANT = "e2e_rnnt"
|
| 25 |
+
|
| 26 |
+
MAX_SHORT_SECONDS = float(os.getenv("MAX_AUDIO_DURATION_SECONDS", 150))
|
| 27 |
+
MAX_LONG_SECONDS = float(os.getenv("MAX_LONGFORM_DURATION_SECONDS", 600))
|
| 28 |
+
|
| 29 |
+
OUTPUT_MODES = {
|
| 30 |
+
"Short clip (<=150 s)": {
|
| 31 |
+
"id": "short",
|
| 32 |
+
"longform": False,
|
| 33 |
+
"max_duration": MAX_SHORT_SECONDS,
|
| 34 |
+
"limit_msg": "Запись длиннее 150 секунд. Выберите режим 'Segmented long-form' для более длинных файлов.",
|
| 35 |
+
"description": "Single call to `model.transcribe`; best latency for concise utterances.",
|
| 36 |
+
"requires_token": False,
|
| 37 |
+
},
|
| 38 |
+
"Segmented long-form (<=10 min)": {
|
| 39 |
+
"id": "longform",
|
| 40 |
+
"longform": True,
|
| 41 |
+
"max_duration": MAX_LONG_SECONDS,
|
| 42 |
+
"limit_msg": "Длина аудио превышает 10 минут. Сократите запись для сегментированного режима.",
|
| 43 |
+
"description": "Calls `model.transcribe_longform` to obtain timestamped segments.",
|
| 44 |
+
"requires_token": True,
|
| 45 |
+
},
|
| 46 |
+
}
|
| 47 |
+
DEFAULT_MODE_LABEL = next(iter(OUTPUT_MODES))
|
| 48 |
+
|
| 49 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 50 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
+
|
| 52 |
+
MODEL_CACHE: Dict[str, AutoModel] = {}
|
| 53 |
+
MODEL_LOCKS = {variant: threading.Lock() for variant in MODEL_VARIANTS}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _format_seconds(value: float) -> str:
|
| 57 |
+
return f"{value:.2f}s"
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def _read_audio_stats(audio_path: str) -> tuple[float, int]:
|
| 61 |
+
"""Return duration (seconds) and sample rate."""
|
| 62 |
+
data, sample_rate = sf.read(audio_path)
|
| 63 |
+
duration = len(data) / float(sample_rate)
|
| 64 |
+
return duration, int(sample_rate)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def _normalize_text(text: object) -> str:
|
| 68 |
+
if text is None:
|
| 69 |
+
return ""
|
| 70 |
+
if isinstance(text, str):
|
| 71 |
+
return text.strip()
|
| 72 |
+
if isinstance(text, dict):
|
| 73 |
+
for key in ("transcription", "text"):
|
| 74 |
+
if key in text and isinstance(text[key], str):
|
| 75 |
+
return text[key].strip()
|
| 76 |
+
return str(text)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def load_model(variant: str) -> AutoModel:
|
| 80 |
+
if variant not in MODEL_VARIANTS:
|
| 81 |
+
raise gr.Error(f"Вариант модели '{variant}' не поддерживается.")
|
| 82 |
+
|
| 83 |
+
if variant in MODEL_CACHE:
|
| 84 |
+
return MODEL_CACHE[variant]
|
| 85 |
+
|
| 86 |
+
lock = MODEL_LOCKS[variant]
|
| 87 |
+
with lock:
|
| 88 |
+
if variant in MODEL_CACHE:
|
| 89 |
+
return MODEL_CACHE[variant]
|
| 90 |
+
|
| 91 |
+
load_kwargs = dict(revision=variant, trust_remote_code=True)
|
| 92 |
+
if HF_TOKEN:
|
| 93 |
+
load_kwargs["token"] = HF_TOKEN
|
| 94 |
+
|
| 95 |
+
model = AutoModel.from_pretrained(REPO_ID, **load_kwargs)
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
model.to(DEVICE)
|
| 99 |
+
except Exception:
|
| 100 |
+
# Some remote implementations manage their own device placement.
|
| 101 |
+
pass
|
| 102 |
+
|
| 103 |
+
MODEL_CACHE[variant] = model
|
| 104 |
+
return model
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def transcribe_audio(
|
| 108 |
+
audio_path: Optional[str],
|
| 109 |
+
variant: str,
|
| 110 |
+
mode_label: str,
|
| 111 |
+
) -> tuple[str, List[List[float | str]], str]:
|
| 112 |
+
if not audio_path or not os.path.exists(audio_path):
|
| 113 |
+
raise gr.Error("Загрузите или запишите аудиофайл, чтобы начать распознавание.")
|
| 114 |
+
|
| 115 |
+
if mode_label not in OUTPUT_MODES:
|
| 116 |
+
raise gr.Error("Выберите режим транскрипции.")
|
| 117 |
+
mode_cfg = OUTPUT_MODES[mode_label]
|
| 118 |
+
|
| 119 |
+
duration, sample_rate = _read_audio_stats(audio_path)
|
| 120 |
+
if duration < 0.3:
|
| 121 |
+
raise gr.Error("Запись слишком короткая (<300 мс).")
|
| 122 |
+
|
| 123 |
+
if duration > mode_cfg["max_duration"]:
|
| 124 |
+
raise gr.Error(mode_cfg["limit_msg"])
|
| 125 |
+
|
| 126 |
+
if mode_cfg["requires_token"] and not HF_TOKEN:
|
| 127 |
+
raise gr.Error(
|
| 128 |
+
"Для сегментированного режима требуется переменная окружения HF_TOKEN "
|
| 129 |
+
"с доступом к модели 'pyannote/segmentation-3.0'."
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
progress = gr.Progress(track_tqdm=False)
|
| 133 |
+
progress(0.1, desc="Загрузка модели")
|
| 134 |
+
model = load_model(variant)
|
| 135 |
+
|
| 136 |
+
start_ts = time.perf_counter()
|
| 137 |
+
progress(0.55, desc="Распознавание речи")
|
| 138 |
+
|
| 139 |
+
if mode_cfg["longform"]:
|
| 140 |
+
utterances = model.transcribe_longform(audio_path)
|
| 141 |
+
segments: List[List[float | str]] = []
|
| 142 |
+
assembled_text_parts: List[str] = []
|
| 143 |
+
for utt in utterances:
|
| 144 |
+
text = _normalize_text(utt)
|
| 145 |
+
if isinstance(utt, dict):
|
| 146 |
+
boundaries = utt.get("boundaries") or utt.get("timestamps")
|
| 147 |
+
else:
|
| 148 |
+
boundaries = None
|
| 149 |
+
if not boundaries:
|
| 150 |
+
boundaries = (0.0, 0.0)
|
| 151 |
+
start, end = boundaries
|
| 152 |
+
segments.append([round(float(start), 2), round(float(end), 2), text])
|
| 153 |
+
assembled_text_parts.append(text)
|
| 154 |
+
transcription_text = "\n".join(assembled_text_parts).strip()
|
| 155 |
+
else:
|
| 156 |
+
result = model.transcribe(audio_path)
|
| 157 |
+
transcription_text = _normalize_text(result)
|
| 158 |
+
segments = []
|
| 159 |
+
|
| 160 |
+
latency = time.perf_counter() - start_ts
|
| 161 |
+
progress(1.0, desc="Готово")
|
| 162 |
+
|
| 163 |
+
metadata_lines = [
|
| 164 |
+
f"- **Model variant:** {MODEL_VARIANTS[variant]}",
|
| 165 |
+
f"- **Transcription mode:** {mode_cfg['description']}",
|
| 166 |
+
f"- **Audio duration:** {_format_seconds(duration)} @ {sample_rate} Hz",
|
| 167 |
+
f"- **Latency:** {_format_seconds(latency)} on `{DEVICE}`",
|
| 168 |
+
f"- **HF token configured:** {'yes' if HF_TOKEN else 'no'}",
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
return transcription_text, segments, "\n".join(metadata_lines)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
DESCRIPTION_MD = """
|
| 175 |
+
# GigaAM-v3 · Russian ASR demo
|
| 176 |
+
|
| 177 |
+
This Space showcases the [`ai-sage/GigaAM-v3`](https://huggingface.co/ai-sage/GigaAM-v3) Conformer-based models.
|
| 178 |
+
|
| 179 |
+
- Upload or record Russian audio (WAV/MP3/FLAC, mono preferred).
|
| 180 |
+
- Pick the model variant and transcription mode that matches your latency/quality needs.
|
| 181 |
+
- Long-form mode returns timestamped segments and requires an `HF_TOKEN` with access to `pyannote/segmentation-3.0`.
|
| 182 |
+
"""
|
| 183 |
+
|
| 184 |
+
FOOTER_MD = """
|
| 185 |
+
**Tips**
|
| 186 |
+
|
| 187 |
+
- Short clips (<150s) work best with the E2E variants (they include punctuation and normalization).
|
| 188 |
+
- Long recordings can take several minutes on CPU-only Spaces; switch to GPU hardware if available.
|
| 189 |
+
- Source: [salute-developers/GigaAM](https://github.com/salute-developers/GigaAM)
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def build_interface() -> gr.Blocks:
|
| 194 |
+
with gr.Blocks(title="GigaAM-v3 ASR demo") as demo:
|
| 195 |
+
gr.Markdown(DESCRIPTION_MD)
|
| 196 |
+
|
| 197 |
+
with gr.Row(equal_height=True):
|
| 198 |
+
audio_input = gr.Audio(
|
| 199 |
+
sources=["microphone", "upload"],
|
| 200 |
+
type="filepath",
|
| 201 |
+
label="Russian audio",
|
| 202 |
+
waveform_options=gr.WaveformOptions(
|
| 203 |
+
show_controls=True,
|
| 204 |
+
waveform_color="#f97316",
|
| 205 |
+
skip_length=2,
|
| 206 |
+
),
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Column():
|
| 210 |
+
variant_dropdown = gr.Dropdown(
|
| 211 |
+
choices=list(MODEL_VARIANTS.keys()),
|
| 212 |
+
value=DEFAULT_VARIANT,
|
| 213 |
+
label="Model variant",
|
| 214 |
+
info="End-to-end variants add punctuation; base CTC/RNNT are lighter but raw.",
|
| 215 |
+
)
|
| 216 |
+
mode_radio = gr.Radio(
|
| 217 |
+
choices=list(OUTPUT_MODES.keys()),
|
| 218 |
+
value=DEFAULT_MODE_LABEL,
|
| 219 |
+
label="Transcription mode",
|
| 220 |
+
info="Select segmented mode for >150 second clips (requires HF token).",
|
| 221 |
+
)
|
| 222 |
+
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
| 223 |
+
|
| 224 |
+
transcript_output = gr.Textbox(
|
| 225 |
+
label="Transcript",
|
| 226 |
+
placeholder="Model output will appear here…",
|
| 227 |
+
lines=8,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
segments_output = gr.Dataframe(
|
| 231 |
+
headers=["Start (s)", "End (s)", "Utterance"],
|
| 232 |
+
datatype=["number", "number", "str"],
|
| 233 |
+
label="Segments (long-form mode)",
|
| 234 |
+
interactive=False,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
metadata_output = gr.Markdown()
|
| 238 |
+
gr.Markdown(FOOTER_MD)
|
| 239 |
+
|
| 240 |
+
transcribe_btn.click(
|
| 241 |
+
fn=transcribe_audio,
|
| 242 |
+
inputs=[audio_input, variant_dropdown, mode_radio],
|
| 243 |
+
outputs=[transcript_output, segments_output, metadata_output],
|
| 244 |
+
api_name="transcribe",
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return demo
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
demo = build_interface()
|
| 251 |
+
|
| 252 |
+
if __name__ == "__main__":
|
| 253 |
+
demo.launch()
|
| 254 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.8.0
|
| 2 |
+
torchaudio==2.8.0
|
| 3 |
+
transformers==4.57.1
|
| 4 |
+
gradio==4.44.0
|
| 5 |
+
soundfile>=0.12.1
|
| 6 |
+
numpy>=1.26.4
|
| 7 |
+
hydra-core>=1.3.2
|
| 8 |
+
omegaconf>=2.3.0
|
| 9 |
+
sentencepiece>=0.1.99
|
| 10 |
+
pyannote.audio==4.0.0
|
| 11 |
+
torchcodec==0.7.0
|
| 12 |
+
accelerate>=0.34.2
|
| 13 |
+
huggingface_hub>=0.25.2
|
| 14 |
+
|
runtime.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python-3.10
|
| 2 |
+
|