Spaces:
Running
on
Zero
Running
on
Zero
optimise read_and_stream_audio
Browse files- app/utils.py +88 -76
app/utils.py
CHANGED
|
@@ -5,6 +5,7 @@ import asyncio
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import spaces
|
| 9 |
import hmac
|
| 10 |
import hashlib
|
|
@@ -29,6 +30,11 @@ from app.silero_vad_engine import Silero_Vad_Engine
|
|
| 29 |
from app.streaming_audio_processor import StreamingAudioProcessor,StreamingAudioProcessorConfig
|
| 30 |
import nemo.collections.asr as nemo_asr
|
| 31 |
READ_SIZE=4000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# --------------------------------------------------------
|
| 34 |
# Utility functions
|
|
@@ -68,7 +74,7 @@ def generate_coturn_config():
|
|
| 68 |
|
| 69 |
|
| 70 |
|
| 71 |
-
def read_and_stream_audio(filepath_to_stream: str, session_hash_code: str,read_size:int =8000, sample_rate:int =16000):
|
| 72 |
"""
|
| 73 |
Read an audio file and stream it chunk by chunk (1s per chunk).
|
| 74 |
Handles errors safely and reports structured messages to the client.
|
|
@@ -84,55 +90,104 @@ def read_and_stream_audio(filepath_to_stream: str, session_hash_code: str,read_s
|
|
| 84 |
try:
|
| 85 |
segment = AudioSegment.from_file(filepath_to_stream)
|
| 86 |
chunk_duration_ms = int((read_size/sample_rate)*1000)
|
|
|
|
| 87 |
total_chunks = len(segment) // chunk_duration_ms + 1
|
| 88 |
start_streaming(session_hash_code)
|
| 89 |
-
logging.info(f"[{session_hash_code}] Starting
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
frame_rate = chunk.frame_rate
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
progress = round(((i + 1) / total_chunks) * 100, 2)
|
|
|
|
|
|
|
| 97 |
if is_stop_requested(session_hash_code):
|
| 98 |
-
logging.info(f"[{session_hash_code}] Stop signal received.
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
break
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
if os.path.exists(task_active_flag) :
|
| 108 |
-
chunk_dir = get_session_hashe_chunks_dir(session_hash_code)
|
| 109 |
-
if not os.path.exists(chunk_dir) :
|
| 110 |
os.makedirs(chunk_dir, exist_ok=True)
|
|
|
|
|
|
|
| 111 |
npz_path = os.path.join(chunk_dir, f"chunk_{i:05d}.npz")
|
| 112 |
-
|
| 113 |
-
if
|
| 114 |
-
np.savez_compressed(npz_path, data=
|
| 115 |
-
logging.debug(f"[{session_hash_code}] Saved chunk {i}
|
| 116 |
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
except asyncio.CancelledError:
|
| 122 |
-
yield from handle_stream_error(session_hash_code, "Streaming cancelled by user.")
|
| 123 |
-
except FileNotFoundError as e:
|
| 124 |
-
yield from handle_stream_error(session_hash_code, e)
|
| 125 |
except Exception as e:
|
| 126 |
yield from handle_stream_error(session_hash_code, e)
|
| 127 |
finally:
|
| 128 |
remove_active_stream_flag_file(session_hash_code)
|
| 129 |
-
logging.info(f"[{session_hash_code}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
# asr_model = nemo_asr.models.ASRModel.from_pretrained("nvidia/canary-1b-v2")
|
| 134 |
asr_model = None
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
@spaces.GPU
|
| 137 |
def task_fake(session_hash_code: str,
|
| 138 |
task_type, lang_source, lang_target,
|
|
@@ -143,23 +198,6 @@ def task_fake(session_hash_code: str,
|
|
| 143 |
"""Continuously read and delete .npz chunks while task is active."""
|
| 144 |
global asr_model
|
| 145 |
yield ("initializing the CanarySpeechEngine and Silero_Vad_Engine", "info", None)
|
| 146 |
-
### TODO
|
| 147 |
-
##-----------
|
| 148 |
-
# conf = CanaryConfig.from_params(
|
| 149 |
-
# task_type, SUPPORTED_LANGS_MAP.get(lang_source),SUPPORTED_LANGS_MAP.get(lang_target) ,
|
| 150 |
-
# chunk_secs, left_context_secs, right_context_secs,
|
| 151 |
-
# streaming_policy, alignatt_thr, waitk_lagging,
|
| 152 |
-
# exclude_sink_frames, xatt_scores_layer, hallucinations_detector
|
| 153 |
-
# )
|
| 154 |
-
|
| 155 |
-
# canary_speech_engine = CanarySpeechEngine(asr_model,conf)
|
| 156 |
-
# silero_vad_engine = Silero_Vad_Engine()
|
| 157 |
-
# streaming_audio_processor_config = StreamingAudioProcessorConfig(
|
| 158 |
-
# read_size=READ_SIZE,
|
| 159 |
-
# silence_threshold_chunks=1
|
| 160 |
-
# )
|
| 161 |
-
# streamer = StreamingAudioProcessor(speech_engine=canary_speech_engine,vad_engine=silero_vad_engine,cfg=streaming_audio_processor_config)
|
| 162 |
-
##-----------
|
| 163 |
yield ("initialized the CanarySpeechEngine and Silero_Vad_Engine", "info", None)
|
| 164 |
yield (f"Task started for session {session_hash_code}", "info", None)
|
| 165 |
|
|
@@ -191,29 +229,22 @@ def task_fake(session_hash_code: str,
|
|
| 191 |
npz = np.load(fpath)
|
| 192 |
samples = npz["data"]
|
| 193 |
rate = int(npz["rate"])
|
| 194 |
-
##-----------
|
| 195 |
-
# new_texts = streamer.process_chunk(samples)
|
| 196 |
-
# for text in new_texts:
|
| 197 |
-
# print(text, end='', flush=True)
|
| 198 |
-
# yield (text, "success", text)
|
| 199 |
-
# logging.debug(f"[{session_hash_code}] {new_texts}")
|
| 200 |
-
##-----------
|
| 201 |
-
### TODO
|
| 202 |
text = f"Transcribed {fname}: {len(samples)} samples @ {rate}Hz\n"
|
| 203 |
yield (text, "success", fname)
|
| 204 |
os.remove(fpath)
|
| 205 |
logging.debug(f"[{session_hash_code}] Deleted processed chunk: {fname}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
except Exception as e:
|
| 207 |
logging.warning(f"[{session_hash_code}] Error processing {fname}: {e}")
|
| 208 |
yield (f"Error processing {fname}: {e}", "warning", fname)
|
| 209 |
-
|
|
|
|
| 210 |
time.sleep(0.1)
|
| 211 |
|
| 212 |
-
# TODO
|
| 213 |
-
##-----------
|
| 214 |
-
# final_text = streamer.finalize_stream()
|
| 215 |
-
# yield (text, "success", final_text)
|
| 216 |
-
##-----------
|
| 217 |
yield ("DONE", "done", None)
|
| 218 |
logging.info(f"[{session_hash_code}] task loop ended (flag removed).")
|
| 219 |
|
|
@@ -338,25 +369,6 @@ def task(session_hash_code: str,
|
|
| 338 |
yield ("Task finished and cleaned up.", "done", None)
|
| 339 |
|
| 340 |
|
| 341 |
-
def handle_stream_error(session_hash_code: str, error: Exception):
|
| 342 |
-
"""
|
| 343 |
-
Handle streaming errors:
|
| 344 |
-
- Log the error
|
| 345 |
-
- Send structured info to client
|
| 346 |
-
- Reset stop flag
|
| 347 |
-
"""
|
| 348 |
-
if isinstance(error, Exception):
|
| 349 |
-
msg = f"{type(error).__name__}: {str(error)}"
|
| 350 |
-
else:
|
| 351 |
-
msg = str(error)
|
| 352 |
-
|
| 353 |
-
logging.error(f"[{session_hash_code}] Streaming error: {msg}", exc_info=isinstance(error, Exception))
|
| 354 |
-
|
| 355 |
-
remove_active_stream_flag_file(session_hash_code)
|
| 356 |
-
|
| 357 |
-
yield ((16000,np.zeros(16000, dtype=np.float32).reshape(1, -1)), AdditionalOutputs({"errored": True, "value": msg, "session_hash_code" : session_hash_code}))
|
| 358 |
-
|
| 359 |
-
|
| 360 |
|
| 361 |
|
| 362 |
# --- Decorator compatibility layer ---
|
|
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import numpy as np
|
| 8 |
+
|
| 9 |
import spaces
|
| 10 |
import hmac
|
| 11 |
import hashlib
|
|
|
|
| 30 |
from app.streaming_audio_processor import StreamingAudioProcessor,StreamingAudioProcessorConfig
|
| 31 |
import nemo.collections.asr as nemo_asr
|
| 32 |
READ_SIZE=4000
|
| 33 |
+
import gradio as gr
|
| 34 |
+
from typing import Generator
|
| 35 |
+
from typing import Generator, Tuple, Any, Optional
|
| 36 |
+
GradioAudioYield = Tuple[int, np.ndarray]
|
| 37 |
+
StreamYield = Generator[Tuple[GradioAudioYield, AdditionalOutputs], None, None]
|
| 38 |
|
| 39 |
# --------------------------------------------------------
|
| 40 |
# Utility functions
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
|
| 77 |
+
def read_and_stream_audio(filepath_to_stream: str, session_hash_code: str,read_size:int =8000, sample_rate:int =16000) -> StreamYield:
|
| 78 |
"""
|
| 79 |
Read an audio file and stream it chunk by chunk (1s per chunk).
|
| 80 |
Handles errors safely and reports structured messages to the client.
|
|
|
|
| 90 |
try:
|
| 91 |
segment = AudioSegment.from_file(filepath_to_stream)
|
| 92 |
chunk_duration_ms = int((read_size/sample_rate)*1000)
|
| 93 |
+
total_duration_ms = len(segment)
|
| 94 |
total_chunks = len(segment) // chunk_duration_ms + 1
|
| 95 |
start_streaming(session_hash_code)
|
| 96 |
+
logging.info(f"[{session_hash_code}] Starting stream: {filepath_to_stream} ({total_chunks} chunks, {chunk_duration_ms}ms steps).")
|
| 97 |
|
| 98 |
+
chunk_dir = get_session_hashe_chunks_dir(session_hash_code)
|
| 99 |
+
ensure_dir_exists = False
|
| 100 |
+
for i, start_ms in enumerate(range(0, total_duration_ms, chunk_duration_ms)):
|
| 101 |
|
| 102 |
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
end_ms = min(start_ms + chunk_duration_ms, total_duration_ms)
|
| 106 |
+
chunk = segment[start_ms:end_ms]
|
| 107 |
frame_rate = chunk.frame_rate
|
| 108 |
+
samples_int16 = np.array(chunk.get_array_of_samples(), dtype=np.int16)
|
| 109 |
+
samples_float = (samples_int16 / 32768.0).astype(np.float32)
|
| 110 |
+
|
| 111 |
+
# Gestion Mono vs Stéréo pour Gradio
|
| 112 |
+
if chunk.channels > 1:
|
| 113 |
+
samples_reshaped = samples_float.reshape(-1, chunk.channels)
|
| 114 |
+
else:
|
| 115 |
+
samples_reshaped = samples_float.reshape(1, -1)
|
| 116 |
+
|
| 117 |
progress = round(((i + 1) / total_chunks) * 100, 2)
|
| 118 |
+
# Envoi au client
|
| 119 |
+
|
| 120 |
if is_stop_requested(session_hash_code):
|
| 121 |
+
logging.info(f"[{session_hash_code}] Stop signal received.")
|
| 122 |
+
samples = np.array(chunk.get_array_of_samples()).reshape(1, -1)
|
| 123 |
+
yield (
|
| 124 |
+
(sample_rate, samples_reshaped),
|
| 125 |
+
AdditionalOutputs({"stoped": True, "value": "STREAM_STOPPED", "session_hash_code": session_hash_code})
|
| 126 |
+
)
|
| 127 |
break
|
| 128 |
+
yield (
|
| 129 |
+
(frame_rate, samples_reshaped),
|
| 130 |
+
AdditionalOutputs({"progressed": True, "value": progress, "session_hash_code": session_hash_code})
|
| 131 |
+
)
|
| 132 |
+
if is_active_task(session_hash_code):
|
| 133 |
+
if not ensure_dir_exists:
|
|
|
|
|
|
|
|
|
|
| 134 |
os.makedirs(chunk_dir, exist_ok=True)
|
| 135 |
+
ensure_dir_exists = True
|
| 136 |
+
|
| 137 |
npz_path = os.path.join(chunk_dir, f"chunk_{i:05d}.npz")
|
| 138 |
+
# Compression activée, attention c'est lent (CPU intensif)
|
| 139 |
+
if is_active_task(session_hash_code):
|
| 140 |
+
np.savez_compressed(npz_path, data=samples_int16, rate=frame_rate)
|
| 141 |
+
logging.debug(f"[{session_hash_code}] Saved chunk {i} to {npz_path}")
|
| 142 |
|
| 143 |
+
time.sleep(chunk_duration_ms/1000)
|
| 144 |
|
| 145 |
+
raise_error() # Optional injected test exception
|
| 146 |
+
|
| 147 |
+
logging.info(f"[{session_hash_code}] Streaming completed.")
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
except Exception as e:
|
| 150 |
yield from handle_stream_error(session_hash_code, e)
|
| 151 |
finally:
|
| 152 |
remove_active_stream_flag_file(session_hash_code)
|
| 153 |
+
logging.info(f"[{session_hash_code}] Cleanup done.")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def handle_stream_error(session_hash_code: str, error: Exception):
|
| 158 |
+
"""
|
| 159 |
+
Handle streaming errors:
|
| 160 |
+
- Log the error
|
| 161 |
+
- Send structured info to client
|
| 162 |
+
- Reset stop flag
|
| 163 |
+
"""
|
| 164 |
+
msg = f"{type(error).__name__}: {str(error)}"
|
| 165 |
+
logging.error(f"[{session_hash_code}] Stream Error: {msg}", exc_info=True)
|
| 166 |
+
|
| 167 |
+
remove_active_stream_flag_file(session_hash_code)
|
| 168 |
+
empty_audio = np.zeros((1, 16000), dtype=np.float32)
|
| 169 |
|
| 170 |
+
yield (
|
| 171 |
+
(16000, empty_audio),
|
| 172 |
+
AdditionalOutputs({"errored": True, "value": msg, "session_hash_code": session_hash_code})
|
| 173 |
+
)
|
| 174 |
|
| 175 |
|
| 176 |
# asr_model = nemo_asr.models.ASRModel.from_pretrained("nvidia/canary-1b-v2")
|
| 177 |
asr_model = None
|
| 178 |
|
| 179 |
+
# @spaces.cache
|
| 180 |
+
# def load_model():
|
| 181 |
+
# logging.info("Chargement du modèle ASR/AST de NeMo...")
|
| 182 |
+
# # Remplacez par votre logique de chargement de modèle
|
| 183 |
+
# model = nemo_asr.models.EncDecRNNTModel.restore_from("path/to/model.nemo")
|
| 184 |
+
# logging.info("Modèle chargé.")
|
| 185 |
+
# return model
|
| 186 |
+
|
| 187 |
+
# # Chargez-le une seule fois au démarrage du script
|
| 188 |
+
# ASR_MODEL = load_model()
|
| 189 |
+
|
| 190 |
+
|
| 191 |
@spaces.GPU
|
| 192 |
def task_fake(session_hash_code: str,
|
| 193 |
task_type, lang_source, lang_target,
|
|
|
|
| 198 |
"""Continuously read and delete .npz chunks while task is active."""
|
| 199 |
global asr_model
|
| 200 |
yield ("initializing the CanarySpeechEngine and Silero_Vad_Engine", "info", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
yield ("initialized the CanarySpeechEngine and Silero_Vad_Engine", "info", None)
|
| 202 |
yield (f"Task started for session {session_hash_code}", "info", None)
|
| 203 |
|
|
|
|
| 229 |
npz = np.load(fpath)
|
| 230 |
samples = npz["data"]
|
| 231 |
rate = int(npz["rate"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
text = f"Transcribed {fname}: {len(samples)} samples @ {rate}Hz\n"
|
| 233 |
yield (text, "success", fname)
|
| 234 |
os.remove(fpath)
|
| 235 |
logging.debug(f"[{session_hash_code}] Deleted processed chunk: {fname}")
|
| 236 |
+
# raise_error()
|
| 237 |
+
|
| 238 |
+
except EOFError as e:
|
| 239 |
+
logging.warning(f"[{session_hash_code}] Error processing {fname}: {e}")
|
| 240 |
+
yield (f"EOFError processing {fname}: {e}", "warning", fname)
|
| 241 |
except Exception as e:
|
| 242 |
logging.warning(f"[{session_hash_code}] Error processing {fname}: {e}")
|
| 243 |
yield (f"Error processing {fname}: {e}", "warning", fname)
|
| 244 |
+
|
| 245 |
+
# continue
|
| 246 |
time.sleep(0.1)
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
yield ("DONE", "done", None)
|
| 249 |
logging.info(f"[{session_hash_code}] task loop ended (flag removed).")
|
| 250 |
|
|
|
|
| 369 |
yield ("Task finished and cleaned up.", "done", None)
|
| 370 |
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
|
| 374 |
# --- Decorator compatibility layer ---
|