Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,461 +1,461 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import yfinance as yf
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import numpy as np
|
| 5 |
-
import plotly.graph_objects as go
|
| 6 |
-
import warnings
|
| 7 |
-
import time
|
| 8 |
-
import gc
|
| 9 |
-
import os
|
| 10 |
-
import torch
|
| 11 |
-
from datetime import datetime, timedelta
|
| 12 |
-
from typing import Optional, Dict, Any, Tuple
|
| 13 |
-
|
| 14 |
-
warnings.filterwarnings('ignore')
|
| 15 |
-
|
| 16 |
-
# Environment optimizations for Hugging Face Spaces
|
| 17 |
-
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 18 |
-
os.environ['HF_HUB_DISABLE_PROGRESS_BARS'] = '1'
|
| 19 |
-
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
| 20 |
-
os.environ['TRANSFORMERS_VERBOSITY'] = 'error'
|
| 21 |
-
|
| 22 |
-
if torch.cuda.is_available():
|
| 23 |
-
torch.cuda.empty_cache()
|
| 24 |
-
torch.set_num_threads(min(4, os.cpu_count() or 1))
|
| 25 |
-
|
| 26 |
-
class FastAIStockAnalyzer:
|
| 27 |
-
"""Optimized AI Stock Analyzer for Gradio"""
|
| 28 |
-
|
| 29 |
-
def __init__(self):
|
| 30 |
-
self.context_length = 32
|
| 31 |
-
self.prediction_length = 7
|
| 32 |
-
self.device = "cpu"
|
| 33 |
-
self.model_cache = {}
|
| 34 |
-
|
| 35 |
-
def fetch_stock_data(self, symbol: str, period: str = "6mo") -> Tuple[Optional[pd.DataFrame], Optional[Dict]]:
|
| 36 |
-
"""Fetch stock data with error handling"""
|
| 37 |
-
try:
|
| 38 |
-
ticker = yf.Ticker(symbol)
|
| 39 |
-
data = ticker.history(period=period, interval="1d",
|
| 40 |
-
actions=False, auto_adjust=True,
|
| 41 |
-
back_adjust=False, repair=False)
|
| 42 |
-
|
| 43 |
-
if data.empty:
|
| 44 |
-
return None, None
|
| 45 |
-
|
| 46 |
-
try:
|
| 47 |
-
info = {
|
| 48 |
-
'longName': ticker.info.get('longName', symbol),
|
| 49 |
-
'sector': ticker.info.get('sector', 'Unknown'),
|
| 50 |
-
'marketCap': ticker.info.get('marketCap', 0)
|
| 51 |
-
}
|
| 52 |
-
except:
|
| 53 |
-
info = {'longName': symbol, 'sector': 'Unknown', 'marketCap': 0}
|
| 54 |
-
|
| 55 |
-
return data, info
|
| 56 |
-
|
| 57 |
-
except Exception as e:
|
| 58 |
-
return None, None
|
| 59 |
-
|
| 60 |
-
def load_chronos_tiny(self) -> Tuple[Optional[Any], str]:
|
| 61 |
-
"""Load Chronos model with caching"""
|
| 62 |
-
model_key = "chronos_tiny"
|
| 63 |
-
|
| 64 |
-
if model_key in self.model_cache:
|
| 65 |
-
return self.model_cache[model_key], "chronos"
|
| 66 |
-
|
| 67 |
-
try:
|
| 68 |
-
from chronos import ChronosPipeline
|
| 69 |
-
|
| 70 |
-
pipeline = ChronosPipeline.from_pretrained(
|
| 71 |
-
"amazon/chronos-t5-tiny",
|
| 72 |
-
device_map="cpu",
|
| 73 |
-
torch_dtype=torch.float32,
|
| 74 |
-
low_cpu_mem_usage=True,
|
| 75 |
-
trust_remote_code=True
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
self.model_cache[model_key] = pipeline
|
| 79 |
-
return pipeline, "chronos"
|
| 80 |
-
|
| 81 |
-
except Exception as e:
|
| 82 |
-
return None, None
|
| 83 |
-
|
| 84 |
-
def load_moirai_small(self) -> Tuple[Optional[Any], str]:
|
| 85 |
-
"""Load Moirai model with caching"""
|
| 86 |
-
model_key = "moirai_small"
|
| 87 |
-
|
| 88 |
-
if model_key in self.model_cache:
|
| 89 |
-
return self.model_cache[model_key], "moirai"
|
| 90 |
-
|
| 91 |
-
try:
|
| 92 |
-
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule
|
| 93 |
-
|
| 94 |
-
module = MoiraiModule.from_pretrained(
|
| 95 |
-
"Salesforce/moirai-1.0-R-small",
|
| 96 |
-
low_cpu_mem_usage=True,
|
| 97 |
-
device_map="cpu",
|
| 98 |
-
torch_dtype=torch.float32,
|
| 99 |
-
trust_remote_code=True
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
model = MoiraiForecast(
|
| 103 |
-
module=module,
|
| 104 |
-
prediction_length=self.prediction_length,
|
| 105 |
-
context_length=self.context_length,
|
| 106 |
-
patch_size="auto",
|
| 107 |
-
num_samples=15,
|
| 108 |
-
target_dim=1,
|
| 109 |
-
feat_dynamic_real_dim=0,
|
| 110 |
-
past_feat_dynamic_real_dim=0
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
self.model_cache[model_key] = model
|
| 114 |
-
return model, "moirai"
|
| 115 |
-
|
| 116 |
-
except Exception as e:
|
| 117 |
-
return None, None
|
| 118 |
-
|
| 119 |
-
def predict_chronos_fast(self, pipeline: Any, data: np.ndarray) -> Optional[Dict]:
|
| 120 |
-
"""Fast Chronos prediction"""
|
| 121 |
-
try:
|
| 122 |
-
context_data = data[-self.context_length:]
|
| 123 |
-
context = torch.tensor(context_data, dtype=torch.float32).unsqueeze(0)
|
| 124 |
-
|
| 125 |
-
with torch.no_grad():
|
| 126 |
-
forecast = pipeline.predict(
|
| 127 |
-
context=context,
|
| 128 |
-
prediction_length=self.prediction_length,
|
| 129 |
-
num_samples=10,
|
| 130 |
-
temperature=1.0,
|
| 131 |
-
top_k=50,
|
| 132 |
-
top_p=1.0
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
forecast_array = forecast[0].numpy()
|
| 136 |
-
predictions = {
|
| 137 |
-
'mean': np.median(forecast_array, axis=0),
|
| 138 |
-
'q10': np.quantile(forecast_array, 0.1, axis=0),
|
| 139 |
-
'q90': np.quantile(forecast_array, 0.9, axis=0),
|
| 140 |
-
'std': np.std(forecast_array, axis=0)
|
| 141 |
-
}
|
| 142 |
-
|
| 143 |
-
return predictions
|
| 144 |
-
|
| 145 |
-
except Exception as e:
|
| 146 |
-
return None
|
| 147 |
-
|
| 148 |
-
def predict_moirai_fast(self, model: Any, data: np.ndarray) -> Optional[Dict]:
|
| 149 |
-
"""Fast Moirai prediction"""
|
| 150 |
-
try:
|
| 151 |
-
from gluonts.dataset.common import ListDataset
|
| 152 |
-
|
| 153 |
-
dataset = ListDataset([{
|
| 154 |
-
"item_id": "stock",
|
| 155 |
-
"start": "2023-01-01",
|
| 156 |
-
"target": data[-self.context_length:].tolist()
|
| 157 |
-
}], freq='D')
|
| 158 |
-
|
| 159 |
-
predictor = model.create_predictor(
|
| 160 |
-
batch_size=1,
|
| 161 |
-
num_parallel_samples=10
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
forecasts = list(predictor.predict(dataset))
|
| 165 |
-
forecast = forecasts[0]
|
| 166 |
-
|
| 167 |
-
predictions = {
|
| 168 |
-
'mean': forecast.mean,
|
| 169 |
-
'q10': forecast.quantile(0.1),
|
| 170 |
-
'q90': forecast.quantile(0.9),
|
| 171 |
-
'std': np.std(forecast.samples, axis=0)
|
| 172 |
-
}
|
| 173 |
-
|
| 174 |
-
return predictions
|
| 175 |
-
|
| 176 |
-
except Exception as e:
|
| 177 |
-
return None
|
| 178 |
-
|
| 179 |
-
# Initialize analyzer globally for caching
|
| 180 |
-
analyzer = FastAIStockAnalyzer()
|
| 181 |
-
|
| 182 |
-
def analyze_stock(stock_symbol, model_choice, investment_amount, progress=gr.Progress()):
|
| 183 |
-
"""Main analysis function for Gradio"""
|
| 184 |
-
|
| 185 |
-
progress(0.1, desc="Fetching stock data...")
|
| 186 |
-
|
| 187 |
-
# Fetch data
|
| 188 |
-
stock_data, stock_info = analyzer.fetch_stock_data(stock_symbol)
|
| 189 |
-
|
| 190 |
-
if stock_data is None or len(stock_data) < 50:
|
| 191 |
-
return (
|
| 192 |
-
"β Error: Insufficient data for analysis. Please check the stock symbol.",
|
| 193 |
-
None,
|
| 194 |
-
None,
|
| 195 |
-
"N/A",
|
| 196 |
-
"N/A"
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
current_price = stock_data['Close'].iloc[-1]
|
| 200 |
-
company_name = stock_info.get('longName', stock_symbol) if stock_info else stock_symbol
|
| 201 |
-
|
| 202 |
-
progress(0.3, desc="Loading AI model...")
|
| 203 |
-
|
| 204 |
-
# Load model
|
| 205 |
-
model_type = "chronos" if "Chronos" in model_choice else "moirai"
|
| 206 |
-
|
| 207 |
-
if model_type == "chronos":
|
| 208 |
-
model, loaded_type = analyzer.load_chronos_tiny()
|
| 209 |
-
model_name = "Amazon Chronos Tiny"
|
| 210 |
-
else:
|
| 211 |
-
model, loaded_type = analyzer.load_moirai_small()
|
| 212 |
-
model_name = "Salesforce Moirai Small"
|
| 213 |
-
|
| 214 |
-
if model is None:
|
| 215 |
-
return (
|
| 216 |
-
"β Error: Failed to load AI model. Please try again.",
|
| 217 |
-
None,
|
| 218 |
-
None,
|
| 219 |
-
"N/A",
|
| 220 |
-
"N/A"
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
progress(0.6, desc="Generating AI predictions...")
|
| 224 |
-
|
| 225 |
-
# Generate predictions
|
| 226 |
-
if model_type == "chronos":
|
| 227 |
-
predictions = analyzer.predict_chronos_fast(model, stock_data['Close'].values)
|
| 228 |
-
else:
|
| 229 |
-
predictions = analyzer.predict_moirai_fast(model, stock_data['Close'].values)
|
| 230 |
-
|
| 231 |
-
if predictions is None:
|
| 232 |
-
return (
|
| 233 |
-
"β Error: Prediction failed. Please try again.",
|
| 234 |
-
None,
|
| 235 |
-
None,
|
| 236 |
-
"N/A",
|
| 237 |
-
"N/A"
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
progress(0.8, desc="Calculating investment scenarios...")
|
| 241 |
-
|
| 242 |
-
# Analysis results
|
| 243 |
-
mean_pred = predictions['mean']
|
| 244 |
-
final_pred = mean_pred[-1]
|
| 245 |
-
week_change = ((final_pred - current_price) / current_price) * 100
|
| 246 |
-
|
| 247 |
-
# Decision logic
|
| 248 |
-
if week_change > 5:
|
| 249 |
-
decision = "π’ STRONG BUY"
|
| 250 |
-
explanation = "AI expects significant gains!"
|
| 251 |
-
elif week_change > 2:
|
| 252 |
-
decision = "π’ BUY"
|
| 253 |
-
explanation = "AI expects moderate gains"
|
| 254 |
-
elif week_change < -5:
|
| 255 |
-
decision = "π΄ STRONG SELL"
|
| 256 |
-
explanation = "AI expects significant losses"
|
| 257 |
-
elif week_change < -2:
|
| 258 |
-
decision = "π΄ SELL"
|
| 259 |
-
explanation = "AI expects losses"
|
| 260 |
-
else:
|
| 261 |
-
decision = "βͺ HOLD"
|
| 262 |
-
explanation = "AI expects stable prices"
|
| 263 |
-
|
| 264 |
-
# Create analysis text
|
| 265 |
-
analysis_text = f"""
|
| 266 |
-
# π― {company_name} ({stock_symbol}) Analysis
|
| 267 |
-
|
| 268 |
-
## π€ AI RECOMMENDATION: {decision}
|
| 269 |
-
**{explanation}**
|
| 270 |
-
*Powered by {model_name}*
|
| 271 |
-
|
| 272 |
-
## π Key Metrics
|
| 273 |
-
- **Current Price**: ${current_price:.2f}
|
| 274 |
-
- **7-Day Prediction**: ${final_pred:.2f} ({week_change:+.2f}%)
|
| 275 |
-
- **AI Confidence**: {min(100, max(50, 70 + abs(week_change) * 1.5)):.0f}%
|
| 276 |
-
- **Model Used**: {model_name}
|
| 277 |
-
|
| 278 |
-
## π° Investment Scenario (${investment_amount:,.0f})
|
| 279 |
-
- **Shares**: {investment_amount/current_price:.2f}
|
| 280 |
-
- **Predicted Value**: ${investment_amount + ((final_pred - current_price) * (investment_amount/current_price)):,.2f}
|
| 281 |
-
- **Profit/Loss**: ${((final_pred - current_price) * (investment_amount/current_price)):+,.2f} ({week_change:+.2f}%)
|
| 282 |
-
|
| 283 |
-
β οΈ **DISCLAIMER**: This is AI-generated analysis for educational purposes only. Not financial advice.
|
| 284 |
-
"""
|
| 285 |
-
|
| 286 |
-
progress(0.9, desc="Creating charts...")
|
| 287 |
-
|
| 288 |
-
# Create chart
|
| 289 |
-
fig = go.Figure()
|
| 290 |
-
|
| 291 |
-
# Historical data (last 30 days)
|
| 292 |
-
recent = stock_data.tail(30)
|
| 293 |
-
fig.add_trace(go.Scatter(
|
| 294 |
-
x=recent.index,
|
| 295 |
-
y=recent['Close'],
|
| 296 |
-
mode='lines',
|
| 297 |
-
name='Historical Price',
|
| 298 |
-
line=dict(color='blue', width=2)
|
| 299 |
-
))
|
| 300 |
-
|
| 301 |
-
# Predictions
|
| 302 |
-
future_dates = pd.date_range(
|
| 303 |
-
start=stock_data.index[-1] + pd.Timedelta(days=1),
|
| 304 |
-
periods=7,
|
| 305 |
-
freq='D'
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
fig.add_trace(go.Scatter(
|
| 309 |
-
x=future_dates,
|
| 310 |
-
y=mean_pred,
|
| 311 |
-
mode='lines+markers',
|
| 312 |
-
name='AI Prediction',
|
| 313 |
-
line=dict(color='red', width=3),
|
| 314 |
-
marker=dict(size=8)
|
| 315 |
-
))
|
| 316 |
-
|
| 317 |
-
# Confidence bands
|
| 318 |
-
if 'q10' in predictions and 'q90' in predictions:
|
| 319 |
-
fig.add_trace(go.Scatter(
|
| 320 |
-
x=future_dates.tolist() + future_dates[::-1].tolist(),
|
| 321 |
-
y=predictions['q90'].tolist() + predictions['q10'][::-1].tolist(),
|
| 322 |
-
fill='toself',
|
| 323 |
-
fillcolor='rgba(255,0,0,0.1)',
|
| 324 |
-
line=dict(color='rgba(255,255,255,0)'),
|
| 325 |
-
name='Confidence Range',
|
| 326 |
-
showlegend=True
|
| 327 |
-
))
|
| 328 |
-
|
| 329 |
-
fig.update_layout(
|
| 330 |
-
title=f"{stock_symbol} - AI Stock Forecast",
|
| 331 |
-
xaxis_title="Date",
|
| 332 |
-
yaxis_title="Price ($)",
|
| 333 |
-
height=500,
|
| 334 |
-
showlegend=True,
|
| 335 |
-
template="plotly_white"
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
progress(1.0, desc="Analysis complete!")
|
| 339 |
-
|
| 340 |
-
# Create summary metrics
|
| 341 |
-
day_change = stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-2]
|
| 342 |
-
day_change_pct = (day_change / stock_data['Close'].iloc[-2]) * 100
|
| 343 |
-
|
| 344 |
-
current_metrics = f"${current_price:.2f} ({day_change_pct:+.2f}%)"
|
| 345 |
-
prediction_metrics = f"${final_pred:.2f} ({week_change:+.2f}%)"
|
| 346 |
-
|
| 347 |
-
return (
|
| 348 |
-
analysis_text,
|
| 349 |
-
fig,
|
| 350 |
-
decision,
|
| 351 |
-
current_metrics,
|
| 352 |
-
prediction_metrics
|
| 353 |
-
)
|
| 354 |
-
|
| 355 |
-
# Create Gradio interface[1][2][9][12]
|
| 356 |
-
with gr.Blocks(
|
| 357 |
-
theme=gr.themes.Soft(),
|
| 358 |
-
title="β‘ Fast AI Stock Predictor",
|
| 359 |
-
css="footer {visibility: hidden}"
|
| 360 |
-
) as demo:
|
| 361 |
-
|
| 362 |
-
gr.HTML("""
|
| 363 |
-
<div style="text-align: center; padding: 20px;">
|
| 364 |
-
<h1>β‘ Fast AI Stock Predictor</h1>
|
| 365 |
-
<p><strong>π€ Powered by Amazon Chronos & Salesforce Moirai</strong></p>
|
| 366 |
-
<p style="color: #666; font-size: 14px;">β οΈ Educational use only - Not financial advice</p>
|
| 367 |
-
</div>
|
| 368 |
-
""")
|
| 369 |
-
|
| 370 |
-
with gr.Row():
|
| 371 |
-
with gr.Column(scale=1):
|
| 372 |
-
gr.HTML("<h3>π― Configuration</h3>")
|
| 373 |
-
|
| 374 |
-
stock_input = gr.Dropdown(
|
| 375 |
-
choices=["AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META", "NFLX", "NVDA"],
|
| 376 |
-
value="AAPL",
|
| 377 |
-
label="Select Stock",
|
| 378 |
-
allow_custom_value=True,
|
| 379 |
-
info="Choose from popular stocks or enter custom symbol"
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
model_input = gr.Radio(
|
| 383 |
-
choices=["π Chronos (Fast)", "π― Moirai (Accurate)"],
|
| 384 |
-
value="π Chronos (Fast)",
|
| 385 |
-
label="AI Model",
|
| 386 |
-
info="Chronos: Faster | Moirai: More accurate"
|
| 387 |
-
)
|
| 388 |
-
|
| 389 |
-
investment_input = gr.Slider(
|
| 390 |
-
minimum=500,
|
| 391 |
-
maximum=50000,
|
| 392 |
-
value=5000,
|
| 393 |
-
step=500,
|
| 394 |
-
label="Investment Amount ($)",
|
| 395 |
-
info="Amount to analyze for profit/loss scenarios"
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
analyze_btn = gr.Button(
|
| 399 |
-
"π Analyze Stock",
|
| 400 |
-
variant="primary",
|
| 401 |
-
size="lg"
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
with gr.Column(scale=2):
|
| 405 |
-
gr.HTML("<h3>π Results</h3>")
|
| 406 |
-
|
| 407 |
-
with gr.Row():
|
| 408 |
-
current_price_display = gr.Textbox(
|
| 409 |
-
label="Current Price",
|
| 410 |
-
interactive=False,
|
| 411 |
-
container=True
|
| 412 |
-
)
|
| 413 |
-
prediction_display = gr.Textbox(
|
| 414 |
-
label="7-Day Prediction",
|
| 415 |
-
interactive=False,
|
| 416 |
-
container=True
|
| 417 |
-
)
|
| 418 |
-
decision_display = gr.Textbox(
|
| 419 |
-
label="AI Decision",
|
| 420 |
-
interactive=False,
|
| 421 |
-
container=True
|
| 422 |
-
)
|
| 423 |
-
|
| 424 |
-
with gr.Row():
|
| 425 |
-
analysis_output = gr.Markdown(
|
| 426 |
-
label="Analysis Report",
|
| 427 |
-
value="Click 'Analyze Stock' to generate AI-powered analysis..."
|
| 428 |
-
)
|
| 429 |
-
|
| 430 |
-
with gr.Row():
|
| 431 |
-
chart_output = gr.Plot(
|
| 432 |
-
label="Price Chart & Predictions",
|
| 433 |
-
container=True
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
# Event handlers
|
| 437 |
-
analyze_btn.click(
|
| 438 |
-
fn=analyze_stock,
|
| 439 |
-
inputs=[stock_input, model_input, investment_input],
|
| 440 |
-
outputs=[
|
| 441 |
-
analysis_output,
|
| 442 |
-
chart_output,
|
| 443 |
-
decision_display,
|
| 444 |
-
current_price_display,
|
| 445 |
-
prediction_display
|
| 446 |
-
]
|
| 447 |
-
)
|
| 448 |
-
|
| 449 |
-
# Examples
|
| 450 |
-
gr.Examples(
|
| 451 |
-
examples=[
|
| 452 |
-
["AAPL", "π Chronos (Fast)", 5000],
|
| 453 |
-
["TSLA", "π― Moirai (Accurate)", 10000],
|
| 454 |
-
["GOOGL", "π Chronos (Fast)", 2500],
|
| 455 |
-
],
|
| 456 |
-
inputs=[stock_input, model_input, investment_input],
|
| 457 |
-
label="Try these examples:"
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
if __name__ == "__main__":
|
| 461 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
import warnings
|
| 7 |
+
import time
|
| 8 |
+
import gc
|
| 9 |
+
import os
|
| 10 |
+
import torch
|
| 11 |
+
from datetime import datetime, timedelta
|
| 12 |
+
from typing import Optional, Dict, Any, Tuple
|
| 13 |
+
|
| 14 |
+
warnings.filterwarnings('ignore')
|
| 15 |
+
|
| 16 |
+
# Environment optimizations for Hugging Face Spaces
|
| 17 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 18 |
+
os.environ['HF_HUB_DISABLE_PROGRESS_BARS'] = '1'
|
| 19 |
+
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
| 20 |
+
os.environ['TRANSFORMERS_VERBOSITY'] = 'error'
|
| 21 |
+
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
torch.cuda.empty_cache()
|
| 24 |
+
torch.set_num_threads(min(4, os.cpu_count() or 1))
|
| 25 |
+
|
| 26 |
+
class FastAIStockAnalyzer:
|
| 27 |
+
"""Optimized AI Stock Analyzer for Gradio"""
|
| 28 |
+
|
| 29 |
+
def __init__(self):
|
| 30 |
+
self.context_length = 32
|
| 31 |
+
self.prediction_length = 7
|
| 32 |
+
self.device = "cpu"
|
| 33 |
+
self.model_cache = {}
|
| 34 |
+
|
| 35 |
+
def fetch_stock_data(self, symbol: str, period: str = "6mo") -> Tuple[Optional[pd.DataFrame], Optional[Dict]]:
|
| 36 |
+
"""Fetch stock data with error handling"""
|
| 37 |
+
try:
|
| 38 |
+
ticker = yf.Ticker(symbol)
|
| 39 |
+
data = ticker.history(period=period, interval="1d",
|
| 40 |
+
actions=False, auto_adjust=True,
|
| 41 |
+
back_adjust=False, repair=False)
|
| 42 |
+
|
| 43 |
+
if data.empty:
|
| 44 |
+
return None, None
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
info = {
|
| 48 |
+
'longName': ticker.info.get('longName', symbol),
|
| 49 |
+
'sector': ticker.info.get('sector', 'Unknown'),
|
| 50 |
+
'marketCap': ticker.info.get('marketCap', 0)
|
| 51 |
+
}
|
| 52 |
+
except:
|
| 53 |
+
info = {'longName': symbol, 'sector': 'Unknown', 'marketCap': 0}
|
| 54 |
+
|
| 55 |
+
return data, info
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return None, None
|
| 59 |
+
|
| 60 |
+
def load_chronos_tiny(self) -> Tuple[Optional[Any], str]:
|
| 61 |
+
"""Load Chronos model with caching"""
|
| 62 |
+
model_key = "chronos_tiny"
|
| 63 |
+
|
| 64 |
+
if model_key in self.model_cache:
|
| 65 |
+
return self.model_cache[model_key], "chronos"
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
from chronos import ChronosPipeline
|
| 69 |
+
|
| 70 |
+
pipeline = ChronosPipeline.from_pretrained(
|
| 71 |
+
"amazon/chronos-t5-tiny",
|
| 72 |
+
device_map="cpu",
|
| 73 |
+
torch_dtype=torch.float32,
|
| 74 |
+
low_cpu_mem_usage=True,
|
| 75 |
+
trust_remote_code=True
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.model_cache[model_key] = pipeline
|
| 79 |
+
return pipeline, "chronos"
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
return None, None
|
| 83 |
+
|
| 84 |
+
def load_moirai_small(self) -> Tuple[Optional[Any], str]:
|
| 85 |
+
"""Load Moirai model with caching"""
|
| 86 |
+
model_key = "moirai_small"
|
| 87 |
+
|
| 88 |
+
if model_key in self.model_cache:
|
| 89 |
+
return self.model_cache[model_key], "moirai"
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule
|
| 93 |
+
|
| 94 |
+
module = MoiraiModule.from_pretrained(
|
| 95 |
+
"Salesforce/moirai-1.0-R-small",
|
| 96 |
+
low_cpu_mem_usage=True,
|
| 97 |
+
device_map="cpu",
|
| 98 |
+
torch_dtype=torch.float32,
|
| 99 |
+
trust_remote_code=True
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
model = MoiraiForecast(
|
| 103 |
+
module=module,
|
| 104 |
+
prediction_length=self.prediction_length,
|
| 105 |
+
context_length=self.context_length,
|
| 106 |
+
patch_size="auto",
|
| 107 |
+
num_samples=15,
|
| 108 |
+
target_dim=1,
|
| 109 |
+
feat_dynamic_real_dim=0,
|
| 110 |
+
past_feat_dynamic_real_dim=0
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
self.model_cache[model_key] = model
|
| 114 |
+
return model, "moirai"
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return None, None
|
| 118 |
+
|
| 119 |
+
def predict_chronos_fast(self, pipeline: Any, data: np.ndarray) -> Optional[Dict]:
|
| 120 |
+
"""Fast Chronos prediction"""
|
| 121 |
+
try:
|
| 122 |
+
context_data = data[-self.context_length:]
|
| 123 |
+
context = torch.tensor(context_data, dtype=torch.float32).unsqueeze(0)
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
forecast = pipeline.predict(
|
| 127 |
+
context=context,
|
| 128 |
+
prediction_length=self.prediction_length,
|
| 129 |
+
num_samples=10,
|
| 130 |
+
temperature=1.0,
|
| 131 |
+
top_k=50,
|
| 132 |
+
top_p=1.0
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
forecast_array = forecast[0].numpy()
|
| 136 |
+
predictions = {
|
| 137 |
+
'mean': np.median(forecast_array, axis=0),
|
| 138 |
+
'q10': np.quantile(forecast_array, 0.1, axis=0),
|
| 139 |
+
'q90': np.quantile(forecast_array, 0.9, axis=0),
|
| 140 |
+
'std': np.std(forecast_array, axis=0)
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
return predictions
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
return None
|
| 147 |
+
|
| 148 |
+
def predict_moirai_fast(self, model: Any, data: np.ndarray) -> Optional[Dict]:
|
| 149 |
+
"""Fast Moirai prediction"""
|
| 150 |
+
try:
|
| 151 |
+
from gluonts.dataset.common import ListDataset
|
| 152 |
+
|
| 153 |
+
dataset = ListDataset([{
|
| 154 |
+
"item_id": "stock",
|
| 155 |
+
"start": "2023-01-01",
|
| 156 |
+
"target": data[-self.context_length:].tolist()
|
| 157 |
+
}], freq='D')
|
| 158 |
+
|
| 159 |
+
predictor = model.create_predictor(
|
| 160 |
+
batch_size=1,
|
| 161 |
+
num_parallel_samples=10
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
forecasts = list(predictor.predict(dataset))
|
| 165 |
+
forecast = forecasts[0]
|
| 166 |
+
|
| 167 |
+
predictions = {
|
| 168 |
+
'mean': forecast.mean,
|
| 169 |
+
'q10': forecast.quantile(0.1),
|
| 170 |
+
'q90': forecast.quantile(0.9),
|
| 171 |
+
'std': np.std(forecast.samples, axis=0)
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
return predictions
|
| 175 |
+
|
| 176 |
+
except Exception as e:
|
| 177 |
+
return None
|
| 178 |
+
|
| 179 |
+
# Initialize analyzer globally for caching
|
| 180 |
+
analyzer = FastAIStockAnalyzer()
|
| 181 |
+
|
| 182 |
+
def analyze_stock(stock_symbol, model_choice, investment_amount, progress=gr.Progress()):
|
| 183 |
+
"""Main analysis function for Gradio"""
|
| 184 |
+
|
| 185 |
+
progress(0.1, desc="Fetching stock data...")
|
| 186 |
+
|
| 187 |
+
# Fetch data
|
| 188 |
+
stock_data, stock_info = analyzer.fetch_stock_data(stock_symbol)
|
| 189 |
+
|
| 190 |
+
if stock_data is None or len(stock_data) < 50:
|
| 191 |
+
return (
|
| 192 |
+
"β Error: Insufficient data for analysis. Please check the stock symbol.",
|
| 193 |
+
None,
|
| 194 |
+
None,
|
| 195 |
+
"N/A",
|
| 196 |
+
"N/A"
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
current_price = stock_data['Close'].iloc[-1]
|
| 200 |
+
company_name = stock_info.get('longName', stock_symbol) if stock_info else stock_symbol
|
| 201 |
+
|
| 202 |
+
progress(0.3, desc="Loading AI model...")
|
| 203 |
+
|
| 204 |
+
# Load model
|
| 205 |
+
model_type = "chronos" if "Chronos" in model_choice else "moirai"
|
| 206 |
+
|
| 207 |
+
if model_type == "chronos":
|
| 208 |
+
model, loaded_type = analyzer.load_chronos_tiny()
|
| 209 |
+
model_name = "Amazon Chronos Tiny"
|
| 210 |
+
else:
|
| 211 |
+
model, loaded_type = analyzer.load_moirai_small()
|
| 212 |
+
model_name = "Salesforce Moirai Small"
|
| 213 |
+
|
| 214 |
+
if model is None:
|
| 215 |
+
return (
|
| 216 |
+
"β Error: Failed to load AI model. Please try again.",
|
| 217 |
+
None,
|
| 218 |
+
None,
|
| 219 |
+
"N/A",
|
| 220 |
+
"N/A"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
progress(0.6, desc="Generating AI predictions...")
|
| 224 |
+
|
| 225 |
+
# Generate predictions
|
| 226 |
+
if model_type == "chronos":
|
| 227 |
+
predictions = analyzer.predict_chronos_fast(model, stock_data['Close'].values)
|
| 228 |
+
else:
|
| 229 |
+
predictions = analyzer.predict_moirai_fast(model, stock_data['Close'].values)
|
| 230 |
+
|
| 231 |
+
if predictions is None:
|
| 232 |
+
return (
|
| 233 |
+
"β Error: Prediction failed. Please try again.",
|
| 234 |
+
None,
|
| 235 |
+
None,
|
| 236 |
+
"N/A",
|
| 237 |
+
"N/A"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
progress(0.8, desc="Calculating investment scenarios...")
|
| 241 |
+
|
| 242 |
+
# Analysis results
|
| 243 |
+
mean_pred = predictions['mean']
|
| 244 |
+
final_pred = mean_pred[-1]
|
| 245 |
+
week_change = ((final_pred - current_price) / current_price) * 100
|
| 246 |
+
|
| 247 |
+
# Decision logic
|
| 248 |
+
if week_change > 5:
|
| 249 |
+
decision = "π’ STRONG BUY"
|
| 250 |
+
explanation = "AI expects significant gains!"
|
| 251 |
+
elif week_change > 2:
|
| 252 |
+
decision = "π’ BUY"
|
| 253 |
+
explanation = "AI expects moderate gains"
|
| 254 |
+
elif week_change < -5:
|
| 255 |
+
decision = "π΄ STRONG SELL"
|
| 256 |
+
explanation = "AI expects significant losses"
|
| 257 |
+
elif week_change < -2:
|
| 258 |
+
decision = "π΄ SELL"
|
| 259 |
+
explanation = "AI expects losses"
|
| 260 |
+
else:
|
| 261 |
+
decision = "βͺ HOLD"
|
| 262 |
+
explanation = "AI expects stable prices"
|
| 263 |
+
|
| 264 |
+
# Create analysis text
|
| 265 |
+
analysis_text = f"""
|
| 266 |
+
# π― {company_name} ({stock_symbol}) Analysis
|
| 267 |
+
|
| 268 |
+
## π€ AI RECOMMENDATION: {decision}
|
| 269 |
+
**{explanation}**
|
| 270 |
+
*Powered by {model_name}*
|
| 271 |
+
|
| 272 |
+
## π Key Metrics
|
| 273 |
+
- **Current Price**: ${current_price:.2f}
|
| 274 |
+
- **7-Day Prediction**: ${final_pred:.2f} ({week_change:+.2f}%)
|
| 275 |
+
- **AI Confidence**: {min(100, max(50, 70 + abs(week_change) * 1.5)):.0f}%
|
| 276 |
+
- **Model Used**: {model_name}
|
| 277 |
+
|
| 278 |
+
## π° Investment Scenario (${investment_amount:,.0f})
|
| 279 |
+
- **Shares**: {investment_amount/current_price:.2f}
|
| 280 |
+
- **Predicted Value**: ${investment_amount + ((final_pred - current_price) * (investment_amount/current_price)):,.2f}
|
| 281 |
+
- **Profit/Loss**: ${((final_pred - current_price) * (investment_amount/current_price)):+,.2f} ({week_change:+.2f}%)
|
| 282 |
+
|
| 283 |
+
β οΈ **DISCLAIMER**: This is AI-generated analysis for educational purposes only. Not financial advice.
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
progress(0.9, desc="Creating charts...")
|
| 287 |
+
|
| 288 |
+
# Create chart
|
| 289 |
+
fig = go.Figure()
|
| 290 |
+
|
| 291 |
+
# Historical data (last 30 days)
|
| 292 |
+
recent = stock_data.tail(30)
|
| 293 |
+
fig.add_trace(go.Scatter(
|
| 294 |
+
x=recent.index,
|
| 295 |
+
y=recent['Close'],
|
| 296 |
+
mode='lines',
|
| 297 |
+
name='Historical Price',
|
| 298 |
+
line=dict(color='blue', width=2)
|
| 299 |
+
))
|
| 300 |
+
|
| 301 |
+
# Predictions
|
| 302 |
+
future_dates = pd.date_range(
|
| 303 |
+
start=stock_data.index[-1] + pd.Timedelta(days=1),
|
| 304 |
+
periods=7,
|
| 305 |
+
freq='D'
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
fig.add_trace(go.Scatter(
|
| 309 |
+
x=future_dates,
|
| 310 |
+
y=mean_pred,
|
| 311 |
+
mode='lines+markers',
|
| 312 |
+
name='AI Prediction',
|
| 313 |
+
line=dict(color='red', width=3),
|
| 314 |
+
marker=dict(size=8)
|
| 315 |
+
))
|
| 316 |
+
|
| 317 |
+
# Confidence bands
|
| 318 |
+
if 'q10' in predictions and 'q90' in predictions:
|
| 319 |
+
fig.add_trace(go.Scatter(
|
| 320 |
+
x=future_dates.tolist() + future_dates[::-1].tolist(),
|
| 321 |
+
y=predictions['q90'].tolist() + predictions['q10'][::-1].tolist(),
|
| 322 |
+
fill='toself',
|
| 323 |
+
fillcolor='rgba(255,0,0,0.1)',
|
| 324 |
+
line=dict(color='rgba(255,255,255,0)'),
|
| 325 |
+
name='Confidence Range',
|
| 326 |
+
showlegend=True
|
| 327 |
+
))
|
| 328 |
+
|
| 329 |
+
fig.update_layout(
|
| 330 |
+
title=f"{stock_symbol} - AI Stock Forecast",
|
| 331 |
+
xaxis_title="Date",
|
| 332 |
+
yaxis_title="Price ($)",
|
| 333 |
+
height=500,
|
| 334 |
+
showlegend=True,
|
| 335 |
+
template="plotly_white"
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
progress(1.0, desc="Analysis complete!")
|
| 339 |
+
|
| 340 |
+
# Create summary metrics
|
| 341 |
+
day_change = stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-2]
|
| 342 |
+
day_change_pct = (day_change / stock_data['Close'].iloc[-2]) * 100
|
| 343 |
+
|
| 344 |
+
current_metrics = f"${current_price:.2f} ({day_change_pct:+.2f}%)"
|
| 345 |
+
prediction_metrics = f"${final_pred:.2f} ({week_change:+.2f}%)"
|
| 346 |
+
|
| 347 |
+
return (
|
| 348 |
+
analysis_text,
|
| 349 |
+
fig,
|
| 350 |
+
decision,
|
| 351 |
+
current_metrics,
|
| 352 |
+
prediction_metrics
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Create Gradio interface[1][2][9][12]
|
| 356 |
+
with gr.Blocks(
|
| 357 |
+
theme=gr.themes.Soft(),
|
| 358 |
+
title="β‘ Fast AI Stock Predictor",
|
| 359 |
+
css="footer {visibility: hidden}"
|
| 360 |
+
) as demo:
|
| 361 |
+
|
| 362 |
+
gr.HTML("""
|
| 363 |
+
<div style="text-align: center; padding: 20px;">
|
| 364 |
+
<h1>β‘ Fast AI Stock Predictor</h1>
|
| 365 |
+
<p><strong>π€ Powered by Amazon Chronos & Salesforce Moirai</strong></p>
|
| 366 |
+
<p style="color: #666; font-size: 14px;">β οΈ Educational use only - Not financial advice</p>
|
| 367 |
+
</div>
|
| 368 |
+
""")
|
| 369 |
+
|
| 370 |
+
with gr.Row():
|
| 371 |
+
with gr.Column(scale=1):
|
| 372 |
+
gr.HTML("<h3>π― Configuration</h3>")
|
| 373 |
+
|
| 374 |
+
stock_input = gr.Dropdown(
|
| 375 |
+
choices=["AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META", "NFLX", "NVDA"],
|
| 376 |
+
value="AAPL",
|
| 377 |
+
label="Select Stock",
|
| 378 |
+
allow_custom_value=True,
|
| 379 |
+
info="Choose from popular stocks or enter custom symbol"
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
model_input = gr.Radio(
|
| 383 |
+
choices=["π Chronos (Fast)", "π― Moirai (Accurate)"],
|
| 384 |
+
value="π Chronos (Fast)",
|
| 385 |
+
label="AI Model",
|
| 386 |
+
info="Chronos: Faster | Moirai: More accurate"
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
investment_input = gr.Slider(
|
| 390 |
+
minimum=500,
|
| 391 |
+
maximum=50000,
|
| 392 |
+
value=5000,
|
| 393 |
+
step=500,
|
| 394 |
+
label="Investment Amount ($)",
|
| 395 |
+
info="Amount to analyze for profit/loss scenarios"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
analyze_btn = gr.Button(
|
| 399 |
+
"π Analyze Stock",
|
| 400 |
+
variant="primary",
|
| 401 |
+
size="lg"
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
with gr.Column(scale=2):
|
| 405 |
+
gr.HTML("<h3>π Results</h3>")
|
| 406 |
+
|
| 407 |
+
with gr.Row():
|
| 408 |
+
current_price_display = gr.Textbox(
|
| 409 |
+
label="Current Price",
|
| 410 |
+
interactive=False,
|
| 411 |
+
container=True
|
| 412 |
+
)
|
| 413 |
+
prediction_display = gr.Textbox(
|
| 414 |
+
label="7-Day Prediction",
|
| 415 |
+
interactive=False,
|
| 416 |
+
container=True
|
| 417 |
+
)
|
| 418 |
+
decision_display = gr.Textbox(
|
| 419 |
+
label="AI Decision",
|
| 420 |
+
interactive=False,
|
| 421 |
+
container=True
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
with gr.Row():
|
| 425 |
+
analysis_output = gr.Markdown(
|
| 426 |
+
label="Analysis Report",
|
| 427 |
+
value="Click 'Analyze Stock' to generate AI-powered analysis..."
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
with gr.Row():
|
| 431 |
+
chart_output = gr.Plot(
|
| 432 |
+
label="Price Chart & Predictions",
|
| 433 |
+
container=True
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# Event handlers
|
| 437 |
+
analyze_btn.click(
|
| 438 |
+
fn=analyze_stock,
|
| 439 |
+
inputs=[stock_input, model_input, investment_input],
|
| 440 |
+
outputs=[
|
| 441 |
+
analysis_output,
|
| 442 |
+
chart_output,
|
| 443 |
+
decision_display,
|
| 444 |
+
current_price_display,
|
| 445 |
+
prediction_display
|
| 446 |
+
]
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# Examples
|
| 450 |
+
gr.Examples(
|
| 451 |
+
examples=[
|
| 452 |
+
["AAPL", "π Chronos (Fast)", 5000],
|
| 453 |
+
["TSLA", "π― Moirai (Accurate)", 10000],
|
| 454 |
+
["GOOGL", "π Chronos (Fast)", 2500],
|
| 455 |
+
],
|
| 456 |
+
inputs=[stock_input, model_input, investment_input],
|
| 457 |
+
label="Try these examples:"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
if __name__ == "__main__":
|
| 461 |
+
demo.launch(share=True)
|