File size: 14,506 Bytes
a244ac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Math Score Predictor - ML Project</title>
    <style>
        * {
            margin: 0;
            padding: 0;
            box-sizing: border-box;
        }

        html {
            scroll-behavior: smooth;
        }

        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            background: #f8f9fa;
            color: #333;
            line-height: 1.6;
        }

        /* Navigation */
        nav {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            padding: 1rem 2rem;
            position: fixed;
            width: 100%;
            top: 0;
            z-index: 1000;
            box-shadow: 0 2px 20px rgba(0, 0, 0, 0.1);
        }

        .nav-container {
            max-width: 1200px;
            margin: 0 auto;
            display: flex;
            justify-content: space-between;
            align-items: center;
        }

        .nav-brand {
            color: white;
            font-size: 1.5em;
            font-weight: bold;
            text-decoration: none;
        }

        .nav-links {
            display: flex;
            gap: 2rem;
            list-style: none;
        }

        .nav-links a {
            color: white;
            text-decoration: none;
            transition: opacity 0.3s;
            display: inline-block;
        }

        .nav-links a:hover {
            opacity: 0.8;
        }

        .nav-links .cta-button {
            background: white;
            color: #667eea;
            padding: 8px 20px !important;
            border-radius: 20px;
            font-weight: 600;
            font-size: 0.9em !important;
            transition: all 0.3s ease;
        }

        .nav-links .cta-button:hover {
            transform: translateY(-2px);
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
            opacity: 1;
        }

        /* Hero Section */
        .hero {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            padding: 150px 20px 100px;
            text-align: center;
            margin-top: 60px;
        }

        .hero h1 {
            font-size: 3.5em;
            margin-bottom: 1rem;
            text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
            animation: fadeInDown 0.8s ease;
        }

        .hero p {
            font-size: 1.3em;
            margin-bottom: 2rem;
            opacity: 0.9;
            animation: fadeInUp 0.8s ease 0.2s both;
        }

        .cta-button {
            display: inline-block;
            background: white;
            color: #667eea;
            padding: 15px 40px;
            border-radius: 50px;
            text-decoration: none;
            font-weight: 600;
            font-size: 1.1em;
            transition: all 0.3s ease;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
            animation: fadeInUp 0.8s ease 0.4s both;
        }

        .cta-button:hover {
            transform: translateY(-3px);
            box-shadow: 0 6px 25px rgba(0, 0, 0, 0.3);
        }

        /* Features Section */
        .features {
            max-width: 1200px;
            margin: 80px auto;
            padding: 0 20px;
        }

        .section-title {
            text-align: center;
            font-size: 2.5em;
            margin-bottom: 60px;
            color: #333;
        }

        .section-title span {
            color: #667eea;
        }

        .features-grid {
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
            gap: 30px;
            margin-bottom: 80px;
        }

        .feature-card {
            background: white;
            padding: 30px;
            border-radius: 15px;
            box-shadow: 0 5px 20px rgba(0, 0, 0, 0.1);
            transition: all 0.3s ease;
            border-left: 5px solid #667eea;
        }

        .feature-card:hover {
            transform: translateY(-10px);
            box-shadow: 0 10px 35px rgba(0, 0, 0, 0.15);
        }

        .feature-icon {
            font-size: 2.5em;
            margin-bottom: 15px;
        }

        .feature-card h3 {
            color: #667eea;
            margin-bottom: 15px;
            font-size: 1.4em;
        }

        .feature-card p {
            color: #666;
            font-size: 0.95em;
            line-height: 1.8;
        }

        /* Concept Section */
        .concepts {
            background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
            padding: 80px 20px;
            margin: 80px 0;
        }

        .concepts-container {
            max-width: 1000px;
            margin: 0 auto;
        }

        .concept-item {
            background: white;
            padding: 25px;
            margin-bottom: 25px;
            border-radius: 10px;
            border-left: 5px solid #764ba2;
            animation: slideIn 0.6s ease forwards;
        }

        .concept-item:nth-child(1) { animation-delay: 0.1s; }
        .concept-item:nth-child(2) { animation-delay: 0.2s; }
        .concept-item:nth-child(3) { animation-delay: 0.3s; }
        .concept-item:nth-child(4) { animation-delay: 0.4s; }

        .concept-item h4 {
            color: #764ba2;
            font-size: 1.2em;
            margin-bottom: 10px;
        }

        .concept-item p {
            color: #555;
            line-height: 1.8;
        }

        /* Model Performance Section */
        .performance {
            max-width: 1200px;
            margin: 80px auto;
            padding: 0 20px;
        }

        .stats-grid {
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
            gap: 20px;
            margin-top: 40px;
        }

        .stat-box {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            padding: 30px;
            border-radius: 10px;
            text-align: center;
            box-shadow: 0 5px 20px rgba(0, 0, 0, 0.1);
        }

        .stat-number {
            font-size: 2.5em;
            font-weight: bold;
            margin-bottom: 10px;
        }

        .stat-label {
            font-size: 0.9em;
            opacity: 0.9;
        }

        /* Footer */
        footer {
            background: #2c3e50;
            color: white;
            padding: 40px 20px;
            text-align: center;
            margin-top: 80px;
        }

        .footer-content {
            max-width: 1200px;
            margin: 0 auto;
        }

        .footer-section {
            margin-bottom: 20px;
        }

        .footer-section h4 {
            color: #667eea;
            margin-bottom: 10px;
        }

        .footer-contact {
            display: flex;
            justify-content: center;
            gap: 30px;
            flex-wrap: wrap;
            margin: 20px 0;
        }

        .footer-contact a {
            color: #667eea;
            text-decoration: none;
            transition: color 0.3s;
        }

        .footer-contact a:hover {
            color: #764ba2;
        }

        .divider {
            border-top: 1px solid rgba(255, 255, 255, 0.1);
            margin: 30px 0;
        }

        /* Animations */
        @keyframes fadeInDown {
            from {
                opacity: 0;
                transform: translateY(-30px);
            }
            to {
                opacity: 1;
                transform: translateY(0);
            }
        }

        @keyframes fadeInUp {
            from {
                opacity: 0;
                transform: translateY(30px);
            }
            to {
                opacity: 1;
                transform: translateY(0);
            }
        }

        @keyframes slideIn {
            from {
                opacity: 0;
                transform: translateX(-30px);
            }
            to {
                opacity: 1;
                transform: translateX(0);
            }
        }

        /* Responsive */
        @media (max-width: 768px) {
            .hero h1 {
                font-size: 2.2em;
            }

            .hero p {
                font-size: 1.1em;
            }

            .nav-links {
                gap: 1rem;
                font-size: 0.9em;
            }

            .section-title {
                font-size: 2em;
            }

            .features-grid {
                grid-template-columns: 1fr;
            }

            .footer-contact {
                flex-direction: column;
                gap: 10px;
            }
        }
    </style>
</head>
<body>
    <!-- Navigation -->
    <nav>
        <div class="nav-container">
            <a href="/" class="nav-brand">πŸ“Š Math Score Predictor</a>
            <ul class="nav-links">
                <li><a href="#concepts">Concepts</a></li>
                <li><a href="/predict" class="cta-button">πŸš€ Try Now</a></li>
            </ul>
        </div>
    </nav>

    <!-- Hero Section -->
    <section class="hero">
        <h1>πŸŽ“ Machine Learning Math Score Predictor</h1>
        <p>Predict student math performance using advanced ML algorithms trained on comprehensive educational data</p>
        <a href="/predict" class="cta-button">πŸš€ Start Predicting Now</a>
    </section>

    <!-- Concepts Section -->
    <section class="concepts" id="concepts">
        <div class="concepts-container">
            <h2 class="section-title">Understanding the <span>Concepts</span></h2>
            
            <div class="concept-item">
                <h4>πŸ“Š Dataset & Exploratory Data Analysis (EDA)</h4>
                <p>This project began with analyzing a comprehensive dataset of 1000+ student records. Through EDA, I explored data distributions, identified patterns, detected outliers, and understood correlations between different variables to inform model development.</p>
            </div>

            <div class="concept-item">
                <h4>πŸ”§ Feature Engineering & Data Preprocessing</h4>
                <p>I implemented robust preprocessing pipelines using scikit-learn's ColumnTransformer to handle both numerical and categorical features separately. This included standardization for numerical features and encoding for categorical variables (gender, race, education level, lunch type, test preparation status).</p>
            </div>

            <div class="concept-item">
                <h4>πŸ€– Multiple Supervised Learning Models</h4>
                <p>I trained and experimented with various machine learning algorithms including Linear Regression, Ridge Regression, Lasso Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines to find the best performing model for this prediction task.</p>
            </div>

            <div class="concept-item">
                <h4>πŸ“ˆ Model Selection & Performance Metrics</h4>
                <p>I compared all models using performance metrics like RΒ² Score, Mean Squared Error (MSE), and Mean Absolute Error (MAE). Through careful analysis and comparison of these metrics, I selected the best-performing model that provides accurate and reliable predictions.</p>
            </div>

            <div class="concept-item">
                <h4>βš™οΈ Hyperparameter Tuning</h4>
                <p>To optimize model performance, I conducted hyperparameter tuning using techniques like Grid Search and Randomized Search. This involved testing different parameter combinations to find the optimal configuration that maximizes the model's predictive accuracy.</p>
            </div>

            <div class="concept-item">
                <h4>πŸ’Ύ Model Serialization & Deployment</h4>
                <p>The trained model and preprocessing pipeline were serialized into pickle files for easy storage and deployment. This allows the model to be loaded and used in production without retraining, enabling real-time predictions through this web interface.</p>
            </div>

            <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 30px; border-radius: 10px; margin-top: 30px; text-align: center;">
                <h3 style="margin-bottom: 15px;">πŸŽ“ My Learning Journey</h3>
                <p style="line-height: 1.8; font-size: 1.05em;">This project represents my comprehensive learning of Machine Learning concepts and practices. It covers the entire ML pipeline from data exploration to model deployment. This is my <strong>first machine learning project</strong>, and I'm excited to showcase what I've learned! Many more projects are on the way as I continue my journey in data science and machine learning. πŸš€</p>
            </div>
        </div>
    </section>

    <!-- Footer -->
    <footer>
        <div class="footer-content">
            <div class="footer-section">
                <h4>About This Project</h4>
                <p>This ML project demonstrates the practical application of machine learning in educational analytics, showing how data science can be used to understand and predict student performance.</p>
            </div>

            <div class="divider"></div>

            <div class="footer-section">
                <h4>Get Started</h4>
                <p>Ready to predict math scores? Fill in the student information form and get instant predictions powered by machine learning.</p>
                <a href="/predict" class="cta-button" style="display: inline-block; margin-top: 15px;">Go to Predictor Form</a>
            </div>

            <div class="divider"></div>

            <div class="footer-contact">
                <div>
                    <strong>Created by:</strong> <a href="https://github.com/Aryan45231" target="_blank">Aryan Jaiswal</a>
                </div>
                <div>
                    <strong>Email:</strong> <a href="mailto:aryan78231@gmail.com">aryan78231@gmail.com</a>
                </div>
                <div>
                    <strong>Project Repository:</strong> <a href="https://github.com/Aryan45231/ml-project" target="_blank">View on GitHub</a>
                </div>
            </div>

            <div class="divider"></div>

            <p>&copy; 2024 Math Score Predictor | ML Project 1 | All Rights Reserved</p>
        </div>
    </footer>
</body>
</html>